• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Lasso and probabilistic inequalities for multivariate point processes

Hansen, Niels Richard; Reynaud-Bouret, Patricia; Rivoirard, Vincent (2015), Lasso and probabilistic inequalities for multivariate point processes, Bernoulli, 21, 1, p. 83-143. 10.3150/13-BEJ562

Type
Article accepté pour publication ou publié
External document link
https://arxiv.org/abs/1208.0570v2
Date
2015
Journal name
Bernoulli
Volume
21
Number
1
Publisher
International Statistical Institute
Pages
83-143
Publication identifier
10.3150/13-BEJ562
Metadata
Show full item record
Author(s)
Hansen, Niels Richard
Reynaud-Bouret, Patricia
Rivoirard, Vincent
Abstract (EN)
Due to its low computational cost, Lasso is an attractive regularization method for high-dimensional statistical settings. In this paper, we consider multivariate counting processes depending on an unknown function to be estimated by linear combinations of a fixed dictionary. To select coefficients, we propose an adaptive $\ell_1$-penalization methodology, where data-driven weights of the penalty are derived from new Bernstein type inequalities for martingales. Oracle inequalities are established under assumptions on the Gram matrix of the dictionary. Non-asymptotic probabilistic results for multivariate Hawkes processes are proven, which allows us to check these assumptions by considering general dictionaries based on histograms, Fourier or wavelet bases. Motivated by problems of neuronal activities inference, we finally lead a simulation study for multivariate Hawkes processes and compare our methodology with the {\it adaptive Lasso procedure} proposed by Zou in \cite{Zou}. We observe an excellent behavior of our procedure with respect to the problem of supports recovery. We rely on theoretical aspects for the essential question of tuning our methodology. Unlike adaptive Lasso of \cite{Zou}, our tuning procedure is proven to be robust with respect to all the parameters of the problem, revealing its potential for concrete purposes, in particular in neuroscience.
Subjects / Keywords
adaptive estimation; Bernstein-type inequalities; Hawkes processes; Lasso procedure; Multivariate counting process

Related items

Showing items related by title and author.

  • Thumbnail
    A Data-Dependent Weighted LASSO Under Poisson Noise 
    Hunt, Xin Jiang; Reynaud-Bouret, Patricia; Rivoirard, Vincent; Sansonnet, Laure; Willett, Rebecca (2019) Article accepté pour publication ou publié
  • Thumbnail
    Genomic transcription regulatory element location analysis via poisson weighted lasso 
    Jiang, Xin; Reynaud-Bouret, Patricia; Rivoirard, Vincent; Sansonnet, Laure; Willett, Rebecca (2016) Communication / Conférence
  • Thumbnail
    Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis 
    Tuleau-Malot, Christine; Grammont, Franck; Rivoirard, Vincent; Reynaud-Bouret, Patricia (2014) Article accepté pour publication ou publié
  • Thumbnail
    Inference of functional connectivity in Neurosciences via Hawkes processes 
    Reynaud-Bouret, Patricia; Rivoirard, Vincent; Tuleau-Malot, Christine (2013) Communication / Conférence
  • Thumbnail
    Reconstructing the functional connectivity of multiple spike trains using Hawkes models 
    Lambert, Régis; Tuleau-Malot, Christine; Bessaih, Thomas; Rivoirard, Vincent; Bouret, Yann; Leresche, Nathalie; Reynaud-Bouret, Patricia (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo