• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • DRM (UMR CNRS 7088)
  • DRM : Publications
  • View Item
  •   BIRD Home
  • DRM (UMR CNRS 7088)
  • DRM : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Implied risk aversion in option prices using Hermite polynomials

Coutant, Sophie (1999), Implied risk aversion in option prices using Hermite polynomials, Bank for International Settlements Workshop, 1999-06, Bâle, Suisse

View/Open
cereg9908_COUTANT_Implied Risk Aversion in Options Prices Using Hermite Polynomials.pdf (1.002Mb)
Type
Communication / Conférence
Date
1999
Conference title
Bank for International Settlements Workshop
Conference date
1999-06
Conference city
Bâle
Conference country
Suisse
Pages
34
Metadata
Show full item record
Author(s)
Coutant, Sophie
Abstract (FR)
Nous construisons dans ce papier un estimateur variant avec le temps de la fonction d'aversion au risque d'un investisseur. Jackwerth (1996) et Aït-Sahalia et Lo (1998) montrent qu'il existe une relation théorique entre la densité neutre au risque, la densité subjective et la fonction d'aversion au risque. On estime la densité neutre au risque à partir des prix d'options et la densité subjective à partir d'une série chronologique du sous-jacent. Chaque densité est estimée en données quotidiennes sur le marché français, en utilisant à la suite de Madan et Milne (1994) des expansions en polynômes d'Hermite; on en déduit alors un estimateur de la fonction d'aversion au risque pouvant varier dans le temps.
Abstract (EN)
The aim of this paper is to construct a time-varying estimator of the investors' risk aversion function. Jackwerth (1996) and Aït-Sahalia and Lo (1998) show that there exists a theoretical relationship between the Risk Neutral Density (RND), the Subjective Density (SD), and the Risk Aversion Function. The RND is estimated from options prices and the SD is estimated from underlying asset time series. Both densities are estimated on daily French data using Hermite polynomials' expansions as suggested first by Madan and Milne (1994). We then deduce an estimator of the Risk Aversion Function and show that it is time varying.
Subjects / Keywords
Hermite polynomials; Statistical density; Risk neutral density; Index option's pricing; Risk aversion function
JEL
D81 - Criteria for Decision-Making under Risk and Uncertainty
G12 - Asset Pricing; Trading Volume; Bond Interest Rates

Related items

Showing items related by title and author.

  • Thumbnail
    Employee stock option-implied risk attitude under Rank-Dependent Expected Utility 
    Bahaji, Hamza; Casta, Jean-François (2016) Article accepté pour publication ou publié
  • Thumbnail
    Option pricing by large risk aversion utility under transaction costs 
    Bouchard, Bruno; Kabanov, Yuri; Touzi, Nizar (2001) Article accepté pour publication ou publié
  • Thumbnail
    Using Equivalent Income Concept in Blood Pressure Lowering Drugs Assessment. How Include Inequality Aversion in Cost/Benefit Analysis? 
    Samson, Anne-Laure; Thébaut, Clémence; Dormont, Brigitte; Fleurbaey, Marc; Luchini, Stéphane; Schokkaert, Erik; Van de Voorde, Carine (2014) Communication / Conférence
  • Thumbnail
    Heterogeneous beliefs and asset pricing : an analysis in terms of pessimism, doubt and risk aversion 
    Jouini, Elyès; Ben Mansour, Selima; Napp, Clotilde (2006) Communication / Conférence
  • Thumbnail
    Valuation of an oil field using real options and the information provided by term structures of commodity prices 
    Lautier, Delphine (2003) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo