• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Optimal selling rules for monetary invariant criteria: tracking the maximum of a portfolio with negative drift,

Espinosa, Gilles-Edouard; Elie, Romuald (2015), Optimal selling rules for monetary invariant criteria: tracking the maximum of a portfolio with negative drift,, Mathematical Finance, 25, 4, p. 754-788. http://dx.doi.org/10.1111/mafi.12036

Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-00573429
Date
2015
Journal name
Mathematical Finance
Volume
25
Number
4
Publisher
Blackwell
Pages
754-788
Publication identifier
http://dx.doi.org/10.1111/mafi.12036
Metadata
Show full item record
Author(s)
Espinosa, Gilles-Edouard
Elie, Romuald
Abstract (EN)
Considering a positive portfolio diffusion $X$ with negative drift, we investigate optimal stopping problems of the form $$ \inf_\theta \Esp{f\left(\frac{X_\theta}{\Sup_{s\in[0,\tau]}{X_s}}\right)}\;,$$ where $f$ is a non-increasing function, $\tau$ is the next random time where the portfolio $X$ crosses zero and $\theta$ is any stopping time smaller than $\tau$. Hereby, our motivation is the obtention of an optimal selling strategy minimizing the relative distance between the liquidation value of the portfolio and its highest possible value before it reaches zero. This paper unifies optimal selling rules observed for quadratic absolute distance criteria with bang-bang type ones. More precisely, we provide a verification result for the general stopping problem of interest and derive the exact solution for two classical criteria $f$ of the literature. For the power utility criterion $f:y \mapsto - {y^\la}$ with $\la>0$, instantaneous selling is always optimal, which is consistent with the observations of \cite{DaiJinZhoZho10} or \cite{ShiXuZho08} for the Black-Scholes model in finite horizon. On the contrary, for a relative quadratic error criterion, $f:y \mapsto {(1-y)^2}$, selling is optimal as soon as the process $X$ crosses a specified function $\varphi$ of its running maximum $X^*$. These results reinforce the idea that optimal stopping problems of similar type lead easily to selling rules of very different nature. Nevertheless, our numerical experiments suggest that the practical optimal selling rule for the relative quadratic error criterion is in fact very close to immediate selling.
Subjects / Keywords
Free boundary PDE; Mean reverting diffusion; Verification; Running maximum; Optimal prediction; Optimal stopping

Related items

Showing items related by title and author.

  • Thumbnail
    Detecting the Maximum of a Scalar Diffusion with Negative Drift 
    Espinosa, Gilles-Edouard; Touzi, Nizar (2012) Article accepté pour publication ou publié
  • Thumbnail
    Optimal stopping of a mean reverting diffusion: minimizing the relative distance to the maximum 
    Espinosa, Gilles-Edouard; Elie, Romuald (2011-02) Document de travail / Working paper
  • Thumbnail
    Between uniqueness of the unit of account and plurality of means of payment, the need for money to be instituted and a set of money-ing rules (with an illustration on the case of fiscal provincial monies in 2001-2003 Argentina fs open monetary crisis) 
    Théret, Bruno (2009) Communication / Conférence
  • Thumbnail
    BSDE representations for optimal switching problems with controlled volatility 
    Kharroubi, Idris; Elie, Romuald (2014) Article accepté pour publication ou publié
  • Thumbnail
    Regularity of BSDEs with a convex constraint on the gains-process 
    Bouchard, Bruno; Elie, Romuald; Moreau, Ludovic (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo