• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Invariant Higher-Order Variational Problems II

Gay-Balmaz, François; Holm, Darryl; Meier, David; Ratiu, Tudor; Vialard, François-Xavier (2012), Invariant Higher-Order Variational Problems II, Journal of Nonlinear Science, 22, 4, p. 553-597. http://dx.doi.org/10.1007/s00332-012-9137-2

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/1112.6380v1
Date
2012
Journal name
Journal of Nonlinear Science
Volume
22
Number
4
Publisher
Springer
Pages
553-597
Publication identifier
http://dx.doi.org/10.1007/s00332-012-9137-2
Metadata
Show full item record
Author(s)
Gay-Balmaz, François
Holm, Darryl
Meier, David
Ratiu, Tudor
Vialard, François-Xavier
Abstract (EN)
Motivated by applications in computational anatomy, we consider a second-order problem in the calculus of variations on object manifolds that are acted upon by Lie groups of smooth invertible transformations. This problem leads to solution curves known as Riemannian cubics on object manifolds that are endowed with normal metrics. The prime examples of such object manifolds are the symmetric spaces. We characterize the class of cubics on object manifolds that can be lifted horizontally to cubics on the group of transformations. Conversely, we show that certain types of non-horizontal geodesic on the group of transformations project to cubics. Finally, we apply second-order Lagrange–Poincaré reduction to the problem of Riemannian cubics on the group of transformations. This leads to a reduced form of the equations that reveals the obstruction for the projection of a cubic on a transformation group to again be a cubic on its object manifold.
Subjects / Keywords
Hamilton’s principle; Other variational principles; Constrained dynamics; Higher-order theories; Optimal control problems involving partial differential equations

Related items

Showing items related by title and author.

  • Thumbnail
    Invariant higher-order variational problems 
    Gay-Balmaz, François; Holm, Darryl; Meier, David; Ratiu, Tudor; Vialard, François-Xavier (2012) Article accepté pour publication ou publié
  • Thumbnail
    Variational Second-Order Interpolation on the Group of Diffeomorphisms with a Right-Invariant Metric 
    Vialard, François-Xavier (2018) Document de travail / Working paper
  • Thumbnail
    Generalized compressible fluid flows and solutions of the Camassa-Holm variational model 
    Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2018) Document de travail / Working paper
  • Thumbnail
    Second order models for optimal transport and cubic splines on the Wasserstein space 
    Benamou, Jean-David; Gallouët, Thomas; Vialard, François-Xavier (2019) Article accepté pour publication ou publié
  • Thumbnail
    Diffeomorphic Atlas Estimation using Kärcher Mean and Geodesic Shooting on Volumetric Images 
    Risser, Laurent; Holm, Darryl; Rueckert, Daniel; Vialard, François-Xavier (2011) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo