dc.contributor.author | Zenklusen, Rico | * |
dc.contributor.author | de Werra, Dominique | * |
dc.contributor.author | Ries, Bernard | * |
dc.date.accessioned | 2012-07-13T13:32:36Z | |
dc.date.available | 2012-07-13T13:32:36Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/9745 | |
dc.language.iso | en | en |
dc.subject | Chromishold graphs | en |
dc.subject | Chromatic number | en |
dc.subject | Stable sets | en |
dc.subject | Threshold values | en |
dc.subject | Threshold graph | en |
dc.subject.ddc | 511 | en |
dc.title | A note on chromatic properties of threshold graphs | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Department of Mathematics, Massachusetts Institute of Technology;États-Unis | |
dc.contributor.editoruniversityother | Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne;Suisse | |
dc.description.abstracten | In threshold graphs one may find weights for the vertices and a threshold value t such that for any subset S of vertices, the sum of the weights is at most the threshold t if and only if the set S is a stable (independent) set. In this note we ask a similar question about vertex colorings: given an integer p, when is it possible to find weights (in general depending on p) for the vertices and a threshold value tp such that for any subset S of vertices the sum of the weights is at most tp if and only if S generates a subgraph with chromatic number at most p−1? We show that threshold graphs do have this property and we show that one can even find weights which are valid for all values of p simultaneously. | en |
dc.relation.isversionofjnlname | Discrete Mathematics | |
dc.relation.isversionofjnlvol | 312 | en |
dc.relation.isversionofjnlissue | 10 | en |
dc.relation.isversionofjnldate | 2012 | |
dc.relation.isversionofjnlpages | 1838-1843 | en |
dc.relation.isversionofdoi | 10.1016/j.disc.2012.01.036 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Principes généraux des mathématiques | en |
dc.description.halcandidate | oui | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
hal.person.labIds | 452255 | * |
hal.person.labIds | 408616 | * |
hal.person.labIds | 989 | * |
hal.identifier | hal-01509687 | * |