• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Learning Adapted Dictionaries for Geometry and Texture Separation

Starck, Jean-Luc; Fadili, Jalal; Peyré, Gabriel (2007-09), Learning Adapted Dictionaries for Geometry and Texture Separation, SPIE Wavelets XII, 2007-08, San Diego, CA, Etats-Unis

Type
Communication / Conférence
External document link
http://hal.archives-ouvertes.fr/hal-00365601/en/
Date
2007-09
Conference title
SPIE Wavelets XII
Conference date
2007-08
Conference city
San Diego, CA
Conference country
Etats-Unis
Metadata
Show full item record
Author(s)
Starck, Jean-Luc
Fadili, Jalal
Peyré, Gabriel
Abstract (EN)
This article proposes a new method for image separation into a linear combination of morphological components. This method is applied to decompose an image into meaningful cartoon and textural layers and is used to solve more general inverse problems such as image inpainting. For each of these components, a dictionary is learned from a set of exemplar images. Each layer is characterized by a sparse expansion in the corresponding dictionary. The separation inverse problem is formalized within a variational framework as the optimization of an energy functional. The morphological component analysis algorithm allows to solve iteratively this optimization problem under sparsity-promoting penalties. Using adapted dictionaries learned from data allows to circumvent some difficulties faced by fixed dictionaries. Numerical results demonstrate that this adaptivity is indeed crucial to capture complex texture patterns.
Subjects / Keywords
total variation; wavelets; learning dictionary; sparsity; Image separation

Related items

Showing items related by title and author.

  • Thumbnail
    Apprentissage de dictionnaires parcimonieux adaptés pour la séparation d'images 
    Fadili, Jalal; Starck, Jean-Luc; Peyré, Gabriel (2007) Communication / Conférence
  • Thumbnail
    Learning the Morphological Diversity 
    Starck, Jean-Luc; Fadili, Jalal; Peyré, Gabriel (2010) Article accepté pour publication ou publié
  • Thumbnail
    Model Consistency for Learning with Mirror-Stratifiable Regularizers 
    Fadili, Jalal; Garrigos, Guillaume; Malick, Jérôme; Peyré, Gabriel (2019-04) Communication / Conférence
  • Thumbnail
    Locally Parallel Textures Modeling with Adapted Hilbert Spaces 
    Maurel, Pierre; Aujol, Jean-François; Peyré, Gabriel (2009) Communication / Conférence
  • Thumbnail
    Special Issue: Mathematics and Image Analysis 
    Aujol, Jean-François; Fadili, Jalal; Cohen, Laurent D.; Peyré, Gabriel (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo