• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Improved interpolation inequalities, relative entropy and fast diffusion equations

Toscani, Giuseppe; Dolbeault, Jean (2013), Improved interpolation inequalities, relative entropy and fast diffusion equations, Annales de l'Institut Henri Poincaré. Analyse non linéaire, 30, 5, p. 917-934. http://dx.doi.org/10.1016/j.anihpc.2012.12.004

View/Open
DT-17.pdf (224.5Kb)
Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00634852
Date
2013
Journal name
Annales de l'Institut Henri Poincaré. Analyse non linéaire
Volume
30
Number
5
Publisher
Elsevier
Pages
917-934
Publication identifier
http://dx.doi.org/10.1016/j.anihpc.2012.12.004
Metadata
Show full item record
Author(s)
Toscani, Giuseppe
Dolbeault, Jean cc
Abstract (EN)
We consider a family of Gagliardo-Nirenberg-Sobolev interpolation inequalities which interpolate between Sobolev's inequality and the logarithmic Sobolev inequality, with optimal constants. The difference of the two terms in the interpolation inequalities (written with optimal constant) measures a distance to the manifold of the optimal functions. We give an explicit estimate of the remainder term and establish an improved inequality, with explicit norms and fully detailed constants. Our approach is based on nonlinear evolution equations and improved entropy - entropy production estimates along the associated flow. Optimizing a relative entropy functional with respect to a scaling parameter, or handling properly second moment estimates, turns out to be the central technical issue. This is a new method in the theory of nonlinear evolution equations, which can be interpreted as the best fit of the solution in the asymptotic regime among all asymptotic profiles.
Subjects / Keywords
optimal constants; sharp rates; intermediate asymptotics; second moment; Barenblatt solutions; fast diffusion equation; entropy - entropy production method; manifold of optimal functions; improved inequalities; Gagliardo-Nirenberg-Sobolev inequalities

Related items

Showing items related by title and author.

  • Thumbnail
    Fast diffusion equations: matching large time asymptotics by relative entropy methods 
    Toscani, Giuseppe; Dolbeault, Jean (2011) Article accepté pour publication ou publié
  • Thumbnail
    Constructive stability results in interpolation inequalities and explicit improvements of decay rates of fast diffusion equations 
    Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2023) Article accepté pour publication ou publié
  • Thumbnail
    Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods 
    Bonforte, Matteo; Dolbeault, Jean; Muratori, Matteo; Nazaret, Bruno (2017) Article accepté pour publication ou publié
  • Thumbnail
    Entropy-Energy inequalities and improved convergence rates for nonlinear parabolic equations 
    Juengel, Ansgar; Gentil, Ivan; Dolbeault, Jean; Carrillo, José A. (2006) Article accepté pour publication ou publié
  • Thumbnail
    Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation 
    Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2020) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo