• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

A variational study of some hadron bag models

Thumbnail
Date
2014
Link to item file
http://hal.archives-ouvertes.fr/hal-00714457
Dewey
Sciences connexes (physique, astrophysique)
Sujet
Free boundary problem; Concentration compactness method; Gradient theory of phase transitions; Gamma-convergence; Variational method; Foldy- Wouthuysen transformation; Ground and excited states; Supersymmetry; M.I.T. bag model; Friedberg-Lee model; Soliton bag model; Hadron bag model; Dirac operator; Nonlinear equation
Journal issue
Calculus of Variations and Partial Differential Equations
Volume
49
Number
1-2
Publication date
2014
Article pages
753-793
Publisher
Springer
DOI
http://dx.doi.org/10.1007/s00526-013-0599-3
URI
https://basepub.dauphine.fr/handle/123456789/9722
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Le Treust, Loïc
Type
Article accepté pour publication ou publié
Abstract (EN)
Quantum chromodynamics (QCD) is the theory of strong interaction and accounts for the internal structure of hadrons. Physicists introduced phe- nomenological models such as the M.I.T. bag model, the bag approximation and the soliton bag model to study the hadronic properties. We prove, in this paper, the existence of excited state solutions in the symmetric case and of a ground state solution in the non-symmetric case for the soliton bag and the bag approximation models thanks to the concentration compactness method. We show that the energy functionals of the bag approximation model are Gamma -limits of sequences of soliton bag model energy functionals for the ground and excited state problems. The pre- compactness, up to translation, of the sequence of ground state solutions associated with the soliton bag energy functionals in the non-symmetric case is obtained combining the Gamma -convergence theory and the concentration-compactness method. Finally, we give a rigorous proof of the original derivation of the M.I.T. bag equations done by Chodos, Jaffe, Johnson, Thorn and Weisskopf via a limit of bag approximation ground state solutions in the spherical case. The supersymmetry property of the Dirac operator is the key point in many of our arguments.

Related items

Showing items related by title, author, creator and subject.

  • Méthodes variationnelles et topologiques pour l'étude de modèles non liénaires issus de la mécanique relativiste 

    Le Treust, Loïc (2013-07-05) Thèse
  • Modèle pour l'activation contextuelle : le modèle EASS 

    Badeig, Fabien; Balbo, Flavien (2006) Communication / Conférence
  • Towards an Understanding of the Phases of Goodwill Accounting in Four Western Capitalist Countries: From Stakeholder Model to Shareholder Model 

    Stolowy, Hervé; Richard, Jacques; Ding, Yuan (2008-01) Article accepté pour publication ou publié

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.