• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Existence of weak solutions up to collision for viscous fluid-solid systems with slip

Hillairet, Matthieu; Gérard-Varet, David (2014), Existence of weak solutions up to collision for viscous fluid-solid systems with slip, Communications on Pure and Applied Mathematics, 67, 12, p. 2022-2076. http://dx.doi.org/10.1002/cpa.21523

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00713331
Date
2014
Journal name
Communications on Pure and Applied Mathematics
Volume
67
Number
12
Publisher
Wiley
Pages
2022-2076
Publication identifier
http://dx.doi.org/10.1002/cpa.21523
Metadata
Show full item record
Author(s)
Hillairet, Matthieu
Gérard-Varet, David
Abstract (EN)
We study in this paper the movement of a rigid solid inside an incompressible Navier-Stokes flow, within a bounded domain. We consider the case where slip is allowed at the fluid/solid interface, through a Navier condition. Taking into account slip at the interface is very natural within this model, as classical no-slip conditions lead to unrealistic collisional behavior between the solid and the domain boundary. We prove for this model existence of weak solutions of Leray type, up to collision, in three dimensions. The key point is that, due to the slip condition, the velocity field is discontinuous across the fluid/solid interface. This prevents from obtaining global H1 bounds on the velocity, which makes many aspects of the theory of weak solutions for Dirichlet conditions unadapted.
Subjects / Keywords
Cauchy theory; Navier Wall law; Navier Stokes equations; Fluid-solid interactions

Related items

Showing items related by title and author.

  • Thumbnail
    Computation of the drag force on a rough sphere close to a wall 
    Hillairet, Matthieu; Gérard-Varet, David (2012) Article accepté pour publication ou publié
  • Thumbnail
    Uniqueness results for weak solutions of two-dimensional fluid-solid systems 
    Sueur, Franck; Glass, Olivier (2015) Article accepté pour publication ou publié
  • Thumbnail
    The influence of boundary conditions on the contact problem in a 3D Navier-Stokes Flow 
    Wang, Chao; Hillairet, Matthieu; Gérard-Varet, David (2015) Article accepté pour publication ou publié
  • Thumbnail
    Existence of Weak Solutions for the Unsteady Interaction of a Viscous Fluid with an Elastic Plate (2° article) 
    Grandmont, Céline (2008) Article accepté pour publication ou publié
  • Thumbnail
    Existence of Weak Solutions for the Unsteady Interaction of a Viscous Fluid with an Elastic Plate 
    Chambolle, Antonin; Desjardins, Benoît; Esteban, Maria J.; Grandmont, Céline (2005) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo