Rank penalized estimation of a quantum system
dc.contributor.author | Meziani, Katia
HAL ID: 2110 | |
dc.contributor.author | Hebiri, Mohamed | |
dc.contributor.author | Butucea, Cristina | |
dc.contributor.author | Alquier, Pierre | |
dc.date.accessioned | 2012-07-05T09:21:37Z | |
dc.date.available | 2012-07-05T09:21:37Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/9698 | |
dc.language.iso | en | en |
dc.subject | low rank matrix approximation | en |
dc.subject | oracle inequalities | en |
dc.subject | adaptive estimation | en |
dc.subject | rank estimation | en |
dc.subject | quantum state | en |
dc.subject | quantum tomography | en |
dc.subject | Rank-penalized matrix estimation | en |
dc.subject.ddc | 519 | en |
dc.title | Rank penalized estimation of a quantum system | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA) http://umr-math.univ-mlv.fr/ Université Paris Est Marne-la-Vallée;France | |
dc.contributor.editoruniversityother | Centre de Recherche en Économie et Statistique (CREST) http://www.crest.fr/ INSEE – École Nationale de la Statistique et de l'Administration Économique;France | |
dc.contributor.editoruniversityother | Laboratoire de Probabilités et Modèles Aléatoires (LPMA) http://www.proba.jussieu.fr/ CNRS : UMR7599 – Université Paris VI - Pierre et Marie Curie – Université Paris VII - Paris Diderot;France | |
dc.description.abstracten | We introduce a new method to reconstruct the quantum matrix $\bar{\rho}$ of a system of $n$-qubits and estimate its rank $d$ from data obtained by quantum state tomography measurements repeated $m$ times. The procedure consists in minimizing the risk of a linear estimator $\hat{\bar{\rho}}$ of $\rho$ penalized by given rank (from 1 to $2^n$), where $\hat{\bar{\rho}}$ is previously obtained by the moment method. We obtain simultaneously an estimator of the rank and the resulting state matrix associated to this rank. We establish an upper bound for the error of penalized estimator, evaluated with the Frobenius norm, which is of order $dn(3/4)^n /m$ and consistency for the estimator of the rank. The proposed methodology is computationnaly efficient and is illustrated with synthetic and real data sets. | en |
dc.relation.isversionofjnlname | Physical Review. A, Atomic, Molecular and Optical Physics | |
dc.relation.isversionofjnlvol | 88 | |
dc.relation.isversionofjnldate | 2013 | |
dc.relation.isversionofjnlpages | n°032113 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1103/PhysRevA.88.032113 | |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00705755 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | APS | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |