• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations

Armstrong, Scott N.; Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2014), Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations, Journal of the American Mathematical Society, 27, p. 479-540. http://dx.doi.org/10.1090/S0894-0347-2014-00783-9

Type
Article accepté pour publication ou publié
Date
2014
Journal name
Journal of the American Mathematical Society
Volume
27
Publisher
American Mathematical Society
Pages
479-540
Publication identifier
http://dx.doi.org/10.1090/S0894-0347-2014-00783-9
Metadata
Show full item record
Author(s)
Armstrong, Scott N.

Cardaliaguet, Pierre

Souganidis, Panagiotis E.
Abstract (EN)
We present exponential error estimates and demonstrate an algebraic convergence rate for the homogenization of level-set convex Hamilton-Jacobi equations in i.i.d. random environments, the first quantitative homogenization results for these equations in the stochastic setting. By taking advantage of a connection between the metric approach to homogenization and the theory of first-passage percolation, we obtain estimates on the fluctuations of the solutions to the approximate cell problem in the ballistic regime (away from flat spot of the effective Hamiltonian). In the sub-ballistic regime (on the flat spot), we show that the fluctuations are governed by an entirely different mechanism and the homogenization may proceed, without further assumptions, at an arbitrarily slow rate. We identify a necessary and sufficient condition on the law of the Hamiltonian for an algebraic rate of convergence to hold in the sub-ballistic regime and show, under this hypothesis, that the two rates may be merged to yield comprehensive error estimates and an algebraic rate of convergence for homogenization. Our methods are novel and quite different from the techniques employed in the periodic setting, although we benefit from previous works in both first-passage percolation and homogenization. The link between the rate of homogenization and the flat spot of the effective Hamiltonian, which is related to the nonexistence of correctors, is a purely random phenomenon observed here for the first time.
Subjects / Keywords
convergence rate; first-passage percolation; Hamilton-Jacobi equation; error estimate; stochastic homogenization

Related items

Showing items related by title and author.

  • Thumbnail
    On the existence of correctors for the stochastic homogenization of viscous hamilton-jacobi equations 
    Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2017) Article accepté pour publication ou publié
  • Thumbnail
    Stochastic homogenization of quasilinear Hamilton-Jacobi equations and geometric motions 
    Armstrong, Scott N.; Cardaliaguet, Pierre (2018) Article accepté pour publication ou publié
  • Thumbnail
    Stochastic homogenization of Hamilton-Jacobi and "Viscous"-Hamilton-Jacobi equations with convex 
    Souganidis, Panagiotis E.; Lions, Pierre-Louis (2010) Article accepté pour publication ou publié
  • Thumbnail
    Quantitative stochastic homogenization of viscous Hamilton-Jacobi equations 
    Cardaliaguet, Pierre; Armstrong, Scott N. (2015) Article accepté pour publication ou publié
  • Thumbnail
    Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting 
    Lions, Pierre-Louis; Souganidis, Panagiotis E. (2003) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo