• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Batch self-organizing maps based on city-block distances for interval variables

De Melo, Filipe M.; Bertrand, Patrice; De A. T. De Carvalho, Francisco (2012), Batch self-organizing maps based on city-block distances for interval variables. https://basepub.dauphine.fr/handle/123456789/9692

Type
Document de travail / Working paper
External document link
http://hal.archives-ouvertes.fr/hal-00706519
Date
2012
Publisher
Université Paris-Dauphine
Published in
Paris
Pages
15
Metadata
Show full item record
Author(s)
De Melo, Filipe M.
Bertrand, Patrice
De A. T. De Carvalho, Francisco
Abstract (EN)
The Kohonen Self Organizing Map (SOM) is an unsupervised neural network method with a competitive learning strategy which has both clustering and visualization properties. Interval-valued data arise in practical situations such as recording monthly interval temperatures at meteorological stations, daily interval stock prices, etc. Batch SOM algorithms based on adaptive and non-adaptive city-block distances, suitable for objects described by interval-valued variables, that, for a fixed epoch, optimizes a cost function, are presented. The performance, robustness and usefulness of these SOM algorithms are illustrated with real interval-valued data sets.
Subjects / Keywords
Adaptive distances; City-block distances; Interval-valued data; Self-organizing maps

Related items

Showing items related by title and author.

  • Thumbnail
    Batch SOM algorithms for interval-valued data with automatic weighting of the variables 
    Carvalho, Francisco de A.T. de; Bertrand, Patrice; Simões, Eduardo C. (2016) Article accepté pour publication ou publié
  • Thumbnail
    An interval convexity-based framework for multilevel clustering with applications to single-linkage clustering 
    Bertrand, Patrice; Diatta, Jean (2022) Document de travail / Working paper
  • Thumbnail
    Clustering of symbolic data through a dissimilarity volume based measure 
    Silva, K.P.; De A. T. De Carvalho, Francisco; Csernel, Marc (2008) Communication / Conférence
  • Thumbnail
    Proceedings of 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM+) 2017 
    Lamirel, Jean-Charles; Cottrell, Marie; Olteanu, Madalina (2017) Ouvrage
  • Thumbnail
    Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization 
    Faigl, Jan; Olteanu, Madalina; Drchal, Jan (2022) Ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo