• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

The max quasi-independent set problem

Bourgeois, Nicolas; Giannakos, Aristotelis; Lucarelli, Giorgio; Milis, Ioannis; Paschos, Vangelis; Pottié, Olivier (2012), The max quasi-independent set problem, Journal of Combinatorial Optimization, 23, 1, p. 94-117. 10.1007/s10878-010-9343-5

View/Open
publi1334.pdf (175.6Kb)
Type
Article accepté pour publication ou publié
Date
2012
Journal name
Journal of Combinatorial Optimization
Volume
23
Number
1
Publisher
Springer
Pages
94-117
Publication identifier
10.1007/s10878-010-9343-5
Metadata
Show full item record
Author(s)
Bourgeois, Nicolas
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Giannakos, Aristotelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Lucarelli, Giorgio cc

Milis, Ioannis

Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Pottié, Olivier
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
In this paper, we deal with the problem of finding quasi-independent sets in graphs. This problem is formally defined in three versions, which are shown to be polynomially equivalent. The one that looks most general, namely, f-max quasi-independent set, consists of, given a graph and a non-decreasing function f, finding a maximum size subset Q of the vertices of the graph, such that the number of edges in the induced subgraph is less than or equal to f(|Q|). For this problem, we show an exact solution method that runs within time O(2d+1d−2723n) on graphs of average degree bounded by d. For the most specifically defined γ-max quasi-independent set and k-max quasi-independent set problems, several results on complexity and approximation are shown, and greedy algorithms are proposed, analyzed and tested.
Subjects / Keywords
Exact algorithms; Approximation algorithms; Quasi independent set

Related items

Showing items related by title and author.

  • Thumbnail
    The Max Quasi-Independent Set Problem 
    Pottié, Olivier; Paschos, Vangelis; Milis, Ioannis; Lucarelli, Giorgio; Giannakos, Aristotelis; Bourgeois, Nicolas (2010) Communication / Conférence
  • Thumbnail
    Exact and superpolynomial approximation algorithms for the densest k-subgraph problem 
    Bourgeois, Nicolas; Giannakos, Aristotelis; Lucarelli, Giorgio; Milis, Ioannis; Paschos, Vangelis (2017) Article accepté pour publication ou publié
  • Thumbnail
    Exact and approximation algorithms for densest k-subgraph 
    Lucarelli, Giorgio; Milis, Ioannis; Giannakos, Aristotelis; Paschos, Vangelis; Bourgeois, Nicolas (2013) Communication / Conférence
  • Thumbnail
    Approximating the max edge-coloring problem 
    Bourgeois, Nicolas; Lucarelli, Giorgio; Milis, Ioannis; Paschos, Vangelis (2010) Article accepté pour publication ou publié
  • Thumbnail
    Approximating the max edge-coloring problem 
    Bourgeois, Nicolas; Lucarelli, Giorgio; Milis, Ioannis; Paschos, Vangelis (2009) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo