Show simple item record

dc.contributor.authorDesvillettes, Laurent
dc.contributor.authorMouhot, Clément
HAL ID: 1892
dc.date.accessioned2009-07-08T09:45:39Z
dc.date.available2009-07-08T09:45:39Z
dc.date.issued2005
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/948
dc.language.isoenen
dc.subjectintegrability estimates
dc.subjectnon-cutoff
dc.subjectspatially homogeneous
dc.subjectBoltzmann equationen
dc.subject.ddc519en
dc.titleAbout $L^p$ estimates for the spatially homogeneous Boltzmann equationen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherCNRS - Ecole Normale Supérieure de Cachan;France
dc.description.abstractenFor the homogeneous Boltzmann equation with (cutoff or non cutoff ) hard potentials, we prove estimates of propagation of Lp norms with a weight $(1+ |x|^2)^q/2$ ($1 < p < +\infty$, $q \in \R_+$ large enough), as well as appearance of such weights. The proof is based on some new functional inequalities for the collision operator, proven by elementary means.en
dc.relation.isversionofjnlnameAnnales de l'Institut Henri Poincaré. Analyse non linéaire
dc.relation.isversionofjnlvol22en
dc.relation.isversionofjnlissue2
dc.relation.isversionofjnldate2005
dc.relation.isversionofjnlpages127-142en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/j.anihpc.2004.03.002en
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00087260/en/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherElsevier
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record