Combining Imaging and Clinical Data in Manifold Learning: Distance-Based and Graph-Based Extensions of Laplacian Eigenmaps
Fiot, Jean-Baptiste; Fripp, Jürgen; Cohen, Laurent D. (2012), Combining Imaging and Clinical Data in Manifold Learning: Distance-Based and Graph-Based Extensions of Laplacian Eigenmaps, 9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012, IEEE, p. 4. http://dx.doi.org/10.1109/ISBI.2012.6235612
Type
Communication / ConférenceLien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00701681Date
2012Titre du colloque
ISBI 2012Date du colloque
2012-05Ville du colloque
BarcelonePays du colloque
EspagneTitre de l'ouvrage
9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012Éditeur
IEEE
Isbn
978-1-4577-1857-1
Pages
4; 570-573
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Fiot, Jean-BaptisteCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Fripp, Jürgen
Cohen, Laurent D.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Résumé (EN)
Manifold learning techniques have been widely used to produce low-dimensional representations of patient brain magnetic resonance (MR) images. Diagnosis classifiers trained on these coordinates attempt to separate healthy, mild cognitive impairment and Alzheimer's disease patients. The performance of such classifiers can be improved by incorporating clinical data available in most large-scale clinical studies. However, the standard non-linear dimensionality reduction algorithms cannot be applied directly to imaging and clinical data. In this paper, we introduce a novel extension of Laplacian Eigenmaps that allow the computation of manifolds while combining imaging and clinical data. This method is a distance-based extension that suits better continuous clinical variables than the existing graph-based extension, which is suitable for clinical variables in finite discrete spaces. These methods were evaluated in terms of classification accuracy using 288 MR images and clinical data (ApoE genotypes, Aβ42 concentrations and mini-mental state exam (MMSE) cognitive scores) of patients enrolled in the Alzheimer's disease neuroimaging initiative (ADNI) study.Mots-clés
Alzheimer's disease; clinical data; image processing; population analysis; Manifold learningPublications associées
Affichage des éléments liés par titre et auteur.
-
Fiot, Jean-Baptiste; Cohen, Laurent D.; Bourgeat, Pierrick; Raniga, Parnesh; Acosta, Oscar; Villemagne, Victor; Salvado, Olivier; Fripp, Jürgen (2012) Communication / Conférence
-
Cohen, Laurent D.; Fiot, Jean-Baptiste; Fripp, Jürgen; Raguet, Hugo; Risser, Laurent; Vialard, François-Xavier (2014) Article accepté pour publication ou publié
-
Fiot, Jean-Baptiste; Cohen, Laurent D.; Raniga, Parnesh; Fripp, Jürgen (2013) Article accepté pour publication ou publié
-
Fiot, Jean-Baptiste; Risser, Laurent; Cohen, Laurent D.; Fripp, Jürgen; Vialard, François-Xavier (2012) Communication / Conférence
-
Fiot, Jean-Baptiste; Cohen, Laurent D.; Raniga, Parnesh; Fripp, Jürgen (2012) Communication / Conférence