• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Combining Imaging and Clinical Data in Manifold Learning: Distance-Based and Graph-Based Extensions of Laplacian Eigenmaps

Fiot, Jean-Baptiste; Fripp, Jürgen; Cohen, Laurent D. (2012), Combining Imaging and Clinical Data in Manifold Learning: Distance-Based and Graph-Based Extensions of Laplacian Eigenmaps, 9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012, IEEE, p. 4. http://dx.doi.org/10.1109/ISBI.2012.6235612

Type
Communication / Conférence
External document link
http://hal.archives-ouvertes.fr/hal-00701681
Date
2012
Conference title
ISBI 2012
Conference date
2012-05
Conference city
Barcelone
Conference country
Espagne
Book title
9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012
Publisher
IEEE
ISBN
978-1-4577-1857-1
Pages
4; 570-573
Publication identifier
http://dx.doi.org/10.1109/ISBI.2012.6235612
Metadata
Show full item record
Author(s)
Fiot, Jean-Baptiste
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Fripp, Jürgen

Cohen, Laurent D.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Manifold learning techniques have been widely used to produce low-dimensional representations of patient brain magnetic resonance (MR) images. Diagnosis classifiers trained on these coordinates attempt to separate healthy, mild cognitive impairment and Alzheimer's disease patients. The performance of such classifiers can be improved by incorporating clinical data available in most large-scale clinical studies. However, the standard non-linear dimensionality reduction algorithms cannot be applied directly to imaging and clinical data. In this paper, we introduce a novel extension of Laplacian Eigenmaps that allow the computation of manifolds while combining imaging and clinical data. This method is a distance-based extension that suits better continuous clinical variables than the existing graph-based extension, which is suitable for clinical variables in finite discrete spaces. These methods were evaluated in terms of classification accuracy using 288 MR images and clinical data (ApoE genotypes, Aβ42 concentrations and mini-mental state exam (MMSE) cognitive scores) of patients enrolled in the Alzheimer's disease neuroimaging initiative (ADNI) study.
Subjects / Keywords
Alzheimer's disease; clinical data; image processing; population analysis; Manifold learning

Related items

Showing items related by title and author.

  • Thumbnail
    Multimodality Imaging Population Analysis using Manifold Learning 
    Fiot, Jean-Baptiste; Cohen, Laurent D.; Bourgeat, Pierrick; Raniga, Parnesh; Acosta, Oscar; Villemagne, Victor; Salvado, Olivier; Fripp, Jürgen (2012) Communication / Conférence
  • Thumbnail
    Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer's disease progression 
    Cohen, Laurent D.; Fiot, Jean-Baptiste; Fripp, Jürgen; Raguet, Hugo; Risser, Laurent; Vialard, François-Xavier (2014) Article accepté pour publication ou publié
  • Thumbnail
    Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines 
    Fiot, Jean-Baptiste; Cohen, Laurent D.; Raniga, Parnesh; Fripp, Jürgen (2013) Article accepté pour publication ou publié
  • Thumbnail
    Local vs global descriptors of hippocampus shape evolution for Alzheimer's longitudinal population analysis 
    Fiot, Jean-Baptiste; Risser, Laurent; Cohen, Laurent D.; Fripp, Jürgen; Vialard, François-Xavier (2012) Communication / Conférence
  • Thumbnail
    Efficient Lesion Segmentation using Support Vector Machines 
    Fiot, Jean-Baptiste; Cohen, Laurent D.; Raniga, Parnesh; Fripp, Jürgen (2012) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo