• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A spatially homogeneous Boltzmann equation for elastic, inelastic, and coalescing collisions

Fournier, Nicolas; Mischler, Stéphane (2005), A spatially homogeneous Boltzmann equation for elastic, inelastic, and coalescing collisions, Journal de mathématiques pures et appliquées, 84, 9, p. 1173-1234. http://dx.doi.org/10.1016/j.matpur.2005.04.003

View/Open
31BEIC.pdf (433.6Kb)
Type
Article accepté pour publication ou publié
Date
2005
Journal name
Journal de mathématiques pures et appliquées
Volume
84
Number
9
Publisher
Elsevier
Pages
1173-1234
Publication identifier
http://dx.doi.org/10.1016/j.matpur.2005.04.003
Metadata
Show full item record
Author(s)
Fournier, Nicolas
Mischler, Stéphane
Abstract (EN)
Existence, uniqueness, and qualitative behavior of the solution to a spatially homogeneous Boltzmann equation for particles undergoing elastic, inelastic, and coalescing collisions are studied. Under general assumptions on the collision rates, we prove existence and uniqueness of an $L^1$ solution. This shows in particular that the cooling effect (due to inelastic collisions) does not occur in finite time. In the long time asymptotic, we prove that the solution converges to a mass-dependent Maxwellian (when only elastic collisions are considered), to a velocity Dirac mass (when elastic and inelastic collisions are considered), and to $0$ (when elastic, inelastic, and coalescing collisions are considered). We thus show in the latter case that the effect of coalescence is dominating in large time. Our proofs gather deterministic and stochastic arguments.
Subjects / Keywords
Existence; uniqueness; long time asymptotics; Povnzer inequality; entropy dissipation method; stochastic interpretation

Related items

Showing items related by title and author.

  • Thumbnail
    Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres 
    Mouhot, Clément; Mischler, Stéphane (2009) Article accepté pour publication ou publié
  • Thumbnail
    On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity 
    Mouhot, Clément; Fournier, Nicolas (2009) Article accepté pour publication ou publié
  • Thumbnail
    Cooling process for inelastic Boltzmann equations for hard spheres, Part II: Self-similar solutions and tail behavior 
    Mouhot, Clément; Mischler, Stéphane (2006) Article accepté pour publication ou publié
  • Thumbnail
    Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media 
    Mouhot, Clément; Mischler, Stéphane (2009) Article accepté pour publication ou publié
  • Thumbnail
    Cooling process for inelastic Boltzmann equations for hard spheres, Part I: The Cauchy problem 
    Rodriguez Ricard, Mariano; Mouhot, Clément; Mischler, Stéphane (2006) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo