• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Travelling fronts in stochastic Stokes' drifts

Blanchet, Adrien; Dolbeault, Jean; Kowalczyk, Michal (2008), Travelling fronts in stochastic Stokes' drifts, Physica. A, Statistical Mechanics and its Applications, 387, 23, p. 5741-5751. http://dx.doi.org/10.1016/j.physa.2008.06.011

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00277279/en/
Date
2008
Journal name
Physica. A, Statistical Mechanics and its Applications
Volume
387
Number
23
Publisher
Elsevier
Pages
5741-5751
Publication identifier
http://dx.doi.org/10.1016/j.physa.2008.06.011
Metadata
Show full item record
Author(s)
Blanchet, Adrien
Dolbeault, Jean cc
Kowalczyk, Michal
Abstract (EN)
By analytical methods we study the large time properties of the solution of a simple one-dimensional model of stochastic Stokes' drift. Semi-explicit formulae allow us to characterize the behaviour of the solutions and compute global quantities such as the asymptotic speed of the center of mass or the effective diffusion coefficient. Using an equivalent tilted ratchet model, we observe that the speed of the center of mass converges exponentially to its limiting value. A diffuse, oscillating front attached to the center of mass appears. The description of the front is given using an asymptotic expansion. The asymptotic solution attracts all solutions at an algebraic rate which is determined by the effective diffusion coefficient. The proof relies on an entropy estimate based on homogenized logarithmic Sobolev inequalities. In the traveling frame, the macroscopic profile obeys to an isotropic diffusion. Compared with the original diffusion, diffusion is enhanced or reduced, depending on the regime. At least in the limit cases, the rate of convergence to the effective profile is always decreased. All these considerations allow us to define a notion of efficiency for coherent transport, characterized by a dimensionless number, which is illustrated on two simple examples of traveling potentials with a sinusoidal shape in the first case, and a sawtooth shape in the second case.
Subjects / Keywords
drift velocity; effective diffusion; ratchet; Brownian motion; molecular motors; transport coherence; Stochastic Stokes' drift

Related items

Showing items related by title and author.

  • Thumbnail
    Stochastic Stokes' drift, homogenized functional inequalities, and large time behavior of Brownian ratchets 
    Kowalczyk, Michal; Dolbeault, Jean; Blanchet, Adrien (2009) Article accepté pour publication ou publié
  • Thumbnail
    A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients 
    Kowalczyk, Michal; Illner, Reinhard; Dolbeault, Jean; Bartier, Jean-Philippe (2007) Article accepté pour publication ou publié
  • Thumbnail
    Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities and spectral estimates 
    Dolbeault, Jean; Kowalczyk, Michal (2017) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model 
    Fernandez, Javier; Escobedo, Miguel; Dolbeault, Jean; Blanchet, Adrien (2010) Article accepté pour publication ou publié
  • Thumbnail
    The flashing ratchet: long time behavior and dynamical systems interpretation 
    Dolbeault, Jean; Kinderlehrer, David; Kowalczyk, Michal (2002) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo