Show simple item record

dc.contributor.authorHairer, Martin
dc.contributor.authorGubinelli, Massimiliano
dc.contributor.authorFlandoli, Franco
dc.contributor.authorRomito, Marco
dc.date.accessioned2009-07-08T08:51:39Z
dc.date.available2009-07-08T08:51:39Z
dc.date.issued2008
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/932
dc.language.isoenen
dc.subjectMathematicsen
dc.subjectProbabilityen
dc.subject.ddc519en
dc.titleRigorous remarks about scaling laws in turbulent fluidsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenA definition of scaling law for suitable families of measures is given and investigated. First, a number of necessary conditions are proved. They imply the absence of scaling laws for 2D stochastic Navier-Stokes equations and for the stochastic Stokes (linear) problem in any dimension, while they imply a lower bound on the mean vortex stretching in 3D. Second, for the 3D stochastic Navier-Stokes equations, necessary and sufficient conditions for scaling laws to hold are given, translating the problem into bounds for energy and enstrophy of high and low modes respectively. Unlike in the 2D case, the validity or invalidity of such conditions in 3D remains open.
dc.relation.isversionofjnlnameCommunications in Mathematical Physics
dc.relation.isversionofjnlvol278en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2008
dc.relation.isversionofjnlpages1-29en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s00220-007-0398-9en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringer
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record