• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Leland's Approximations for Concave Pay-Off Functions

Lépinette, Emmanuel (2009), Leland's Approximations for Concave Pay-Off Functions, in Kijima, ‎Masaaki; Kabanov‎, Yuri, Recent advances in financial engineering‎, proceedings of the 2008 Daiwa International Workshop on Financial Engineering, World Scientific, p. 107-117

Type
Communication / Conférence
Date
2009
Conference title
Daiwa International Workshop on Financial Engineering
Conference date
2008-08
Conference city
Tokyo
Conference country
Japon
Book title
Recent advances in financial engineering‎, proceedings of the 2008 Daiwa International Workshop on Financial Engineering
Book author
Kijima, ‎Masaaki; Kabanov‎, Yuri
Publisher
World Scientific
ISBN
978-981-427346-6
Number of pages
230
Pages
107-117
Metadata
Show full item record
Author(s)
Lépinette, Emmanuel
Abstract (EN)
In 1985, Leland suggested an approach to pricing contingent claims under proportional transaction costs. Its main idea is to use the classical Black–Scholes formula with a suitably enlarged volatility for a periodically revised portfolio which terminal value approximates the pay-off h(ST). In subsequent studies, Lott (for α = 1/2), Kabanov and Safarian proved that for the call-option, i.e. for h(x) = (x-K)+, Leland's portfolios, indeed, approximate the pay-off if the transaction costs coefficients decreases as n-α for α ∈ ]0, 1/2] where n is the number of revisions. These results can be extended to the case of more general pay-off functions and non-uniform revision intervals [1]. Unfortunately, the terminal values of portfolios do not converge to the pay-off if h is not a convex function. In this paper, we show that we can slightly modify the Leland strategy such that the convergence holds for a large class of concave pay-off functions if α = 1/2.
Subjects / Keywords
Black–Scholes formula; Transaction costs; Leland's strategy; Approximate hedging
JEL
D23 - Organizational Behavior; Transaction Costs; Property Rights

Related items

Showing items related by title and author.

  • Thumbnail
    Mean square error for the Leland-Lott hedging strategy: convex pay-offs 
    Lépinette, Emmanuel; Kabanov, Yuri (2010) Article accepté pour publication ou publié
  • Thumbnail
    Approximate Hedging of Contingent Claims Under Transaction Costs for General Pay-Offs 
    Lépinette, Emmanuel (2010) Article accepté pour publication ou publié
  • Thumbnail
    Diffusion equations: convergence of the functional scheme derived from the Binomial tree with local volatility for non smooth payoff functions 
    Baptiste, Julien; Lépinette, Emmanuel (2018) Article accepté pour publication ou publié
  • Thumbnail
    Modified Leland's Strategy for a Constant Transaction Costs Rate 
    Lépinette, Emmanuel (2012) Article accepté pour publication ou publié
  • Thumbnail
    Mean Square Error and Limit Theorem for the Modi fied Leland Hedging Strategy with a Constant Transaction Costs Coefficient 
    Lépinette, Emmanuel; Darses, Sébastien (2014) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo