hal.structure.identifier | Dipartimento di Matematica [Roma II] [DIPMAT] | |
dc.contributor.author | Cannarsa, Piermarco | * |
hal.structure.identifier | Dipartimento di Matematica [Roma II] [DIPMAT] | |
dc.contributor.author | Giorgieri, Elena | * |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Cardaliaguet, Pierre | * |
dc.date.accessioned | 2012-05-30T14:38:54Z | |
dc.date.available | 2012-05-30T14:38:54Z | |
dc.date.issued | 2007 | |
dc.identifier.issn | 0002-9947 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/9302 | |
dc.language.iso | en | en |
dc.subject | Normal distance | |
dc.subject | eikonal equation | |
dc.subject | singularities | |
dc.subject | semiconcave functions | |
dc.subject | Hölder continuous functions | |
dc.subject | viscosity solutions | |
dc.subject.ddc | 515 | en |
dc.title | Hölder regularity of the normal distance with an application to a PDE model for growing sandpiles. | |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Dipartimento di Matematica [Roma II] (DIPMAT) http://www.mat.uniroma2.it/ Universita degli studi di Roma Tor Vergata;Italie | |
dc.description.abstracten | Given a bounded domain $ \Omega$ in $ \mathbb{R}^2$ with smooth boundary, the cut locus $ \overline \Sigma$ is the closure of the set of nondifferentiability points of the distance $ d$ from the boundary of $ \Omega$. The normal distance to the cut locus, $ \tau(x)$, is the map which measures the length of the line segment joining $ x$ to the cut locus along the normal direction $ Dd(x)$, whenever $ x\notin \overline \Sigma$. Recent results show that this map, restricted to boundary points, is Lipschitz continuous, as long as the boundary of $ \Omega$ is of class $ C^{2,1}$. Our main result is the global Hölder regularity of $ \tau$ in the case of a domain $ \Omega$ with analytic boundary. We will also show that the regularity obtained is optimal, as soon as the set of the so-called regular conjugate points is nonempty. In all the other cases, Lipschitz continuity can be extended to the whole domain $ \Omega$. The above regularity result for $ \tau$ is also applied to derive the Hölder continuity of the solution of a system of partial differential equations that arises in granular matter theory and optimal mass transfer. | |
dc.relation.isversionofjnlname | Transactions of the American Mathematical Society | |
dc.relation.isversionofjnlvol | 359 | |
dc.relation.isversionofjnlissue | 6 | |
dc.relation.isversionofjnldate | 2007 | |
dc.relation.isversionofjnlpages | 2741-2775 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1090/S0002-9947-07-04259-6 | |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | American Mathematical Society | |
dc.subject.ddclabel | Analyse | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | oui | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.date.updated | 2020-10-08T09:36:34Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |