Afficher la notice abrégée

dc.contributor.authorGiorgieri, Elena
dc.contributor.authorCardaliaguet, Pierre
dc.contributor.authorCannarsa, Piermarco
dc.subjectHölder continuous functionsen
dc.subjectviscosity solutionsen
dc.subjecteikonal equationen
dc.subjectsemiconcave functionsen
dc.subjectNormal distanceen
dc.titleHölder regularity of the normal distance with an application to a PDE model for growing sandpiles.en
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherDipartimento di Matematica [Roma II] (DIPMAT) Universita degli studi di Roma Tor Vergata;Italie
dc.description.abstractenGiven a bounded domain $ \Omega$ in $ \mathbb{R}^2$ with smooth boundary, the cut locus $ \overline \Sigma$ is the closure of the set of nondifferentiability points of the distance $ d$ from the boundary of $ \Omega$. The normal distance to the cut locus, $ \tau(x)$, is the map which measures the length of the line segment joining $ x$ to the cut locus along the normal direction $ Dd(x)$, whenever $ x\notin \overline \Sigma$. Recent results show that this map, restricted to boundary points, is Lipschitz continuous, as long as the boundary of $ \Omega$ is of class $ C^{2,1}$. Our main result is the global Hölder regularity of $ \tau$ in the case of a domain $ \Omega$ with analytic boundary. We will also show that the regularity obtained is optimal, as soon as the set of the so-called regular conjugate points is nonempty. In all the other cases, Lipschitz continuity can be extended to the whole domain $ \Omega$. The above regularity result for $ \tau$ is also applied to derive the Hölder continuity of the solution of a system of partial differential equations that arises in granular matter theory and optimal mass transfer.en
dc.relation.isversionofjnlnameTransactions of the American Mathematical Society

Fichiers attachés à cette notice


Il n'y a pas de fichiers associés à cette notice.

Ce document fait partie de la (des) collection(s) suivante(s)

Afficher la notice abrégée