• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Hölder regularity of the normal distance with an application to a PDE model for growing sandpiles.

Cannarsa, Piermarco; Giorgieri, Elena; Cardaliaguet, Pierre (2007), Hölder regularity of the normal distance with an application to a PDE model for growing sandpiles., Transactions of the American Mathematical Society, 359, 6, p. 2741-2775. http://dx.doi.org/10.1090/S0002-9947-07-04259-6

Type
Article accepté pour publication ou publié
Date
2007
Journal name
Transactions of the American Mathematical Society
Volume
359
Number
6
Publisher
American Mathematical Society
Pages
2741-2775
Publication identifier
http://dx.doi.org/10.1090/S0002-9947-07-04259-6
Metadata
Show full item record
Author(s)
Cannarsa, Piermarco
Dipartimento di Matematica [Roma II] [DIPMAT]
Giorgieri, Elena
Dipartimento di Matematica [Roma II] [DIPMAT]
Cardaliaguet, Pierre
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Given a bounded domain $ \Omega$ in $ \mathbb{R}^2$ with smooth boundary, the cut locus $ \overline \Sigma$ is the closure of the set of nondifferentiability points of the distance $ d$ from the boundary of $ \Omega$. The normal distance to the cut locus, $ \tau(x)$, is the map which measures the length of the line segment joining $ x$ to the cut locus along the normal direction $ Dd(x)$, whenever $ x\notin \overline \Sigma$. Recent results show that this map, restricted to boundary points, is Lipschitz continuous, as long as the boundary of $ \Omega$ is of class $ C^{2,1}$. Our main result is the global Hölder regularity of $ \tau$ in the case of a domain $ \Omega$ with analytic boundary. We will also show that the regularity obtained is optimal, as soon as the set of the so-called regular conjugate points is nonempty. In all the other cases, Lipschitz continuity can be extended to the whole domain $ \Omega$. The above regularity result for $ \tau$ is also applied to derive the Hölder continuity of the solution of a system of partial differential equations that arises in granular matter theory and optimal mass transfer.
Subjects / Keywords
Normal distance; eikonal equation; singularities; semiconcave functions; Hölder continuous functions; viscosity solutions

Related items

Showing items related by title and author.

  • Thumbnail
    Mean Field Games with state constraints: from mild to pointwise solutions of the PDE system 
    Cannarsa, Piermarco; Capuani, Rossana; Cardaliaguet, Pierre (2021) Article accepté pour publication ou publié
  • Thumbnail
    On a differential model for growing sandpiles with non-regular sources 
    Sinestrari, Carlo; Cannarsa, Piermarco; Cardaliaguet, Pierre (2009) Article accepté pour publication ou publié
  • Thumbnail
    Representation of equilibrium solutions to the table problem of growing sandpiles 
    Cannarsa, Piermarco; Cardaliaguet, Pierre (2004) Article accepté pour publication ou publié
  • Thumbnail
    Hölder estimates in space-time for viscosity solutions of Hamilton-Jacobi equations 
    Cannarsa, Piermarco; Cardaliaguet, Pierre (2010) Article accepté pour publication ou publié
  • Thumbnail
    Regularity Results for Eikonal-Type Equations with Nonsmooth Coefficients 
    Cannarsa, Piermarco; Cardaliaguet, Pierre (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo