Show simple item record

dc.contributor.authorEsteban, Maria J.
HAL ID: 738381
ORCID: 0000-0003-1700-9338
dc.contributor.authorDolbeault, Jean
HAL ID: 87
ORCID: 0000-0003-4234-2298
dc.date.accessioned2012-05-18T08:36:31Z
dc.date.available2012-05-18T08:36:31Z
dc.date.issued2012
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/9251
dc.language.isoenen
dc.subjectFreefem++en
dc.subjectfinite element methoden
dc.subjectFixed point theoryen
dc.subjectBifurcation theoryen
dc.subjectFixed pointen
dc.subjectself-adaptive meshen
dc.subjectRoothan methoden
dc.subjectsymmetry breakingen
dc.subjectradial symmetryen
dc.subjectCaffarelli-Kohn-Nirenberg inequalityen
dc.subjectSchrödinger operatoren
dc.subject.ddc515en
dc.titleA scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalitiesen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThe purpose of this paper is to explain the phenomenon of symmetry breaking for optimal functions in functional inequalities by the numerical computations of some well chosen solutions of the corresponding Euler-Lagrange equations. For many of those inequalities it was believed that the only source of symmetry breaking would be the instability of the symmetric optimizer in the class of all admissible functions. But recently, it was shown by an indirect argument that for some Caffarelli-Kohn-Nirenberg inequalities this conjecture was not true. In order to understand this new symmetry breaking mechanism we have computed the branch of minimal solutions for a simple problem. A reparametrization of this branch allows us to build a scenario for the new phenomenon of symmetry breaking. The computations have been performed using Freefem++.en
dc.relation.isversionofjnlnameJournal of Numerical Mathematics
dc.relation.isversionofjnlvol20
dc.relation.isversionofjnlissue3-4
dc.relation.isversionofjnldate2012
dc.relation.isversionofjnlpages233-250
dc.relation.isversionofdoihttp://dx.doi.org/10.1515/jnum-2012-0012
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00695542
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherDe Gruyter
dc.subject.ddclabelAnalyseen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record