• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Orbitally-Stable States in Generalized Hartree-Fock Theory

Thumbnail
Date
2009
Link to item file
http://hal.archives-ouvertes.fr/hal-00250383/en/
Dewey
Probabilités et mathématiques appliquées
Sujet
compact self-adjoint operators; trace-class operators; mixed states; occupation numbers; Lieb-Thirring inequality; Schrödinger operator; asymptotic distribution of eigenvalues; free energy; temperature; entropy; Hartree-Fock model; self-consistent potential; orbital stability; nonlinear equation; loss of compactness
Journal issue
Mathematical Models and Methods in Applied Sciences
Volume
19
Number
3
Publication date
2009
Article pages
347-367
Publisher
World Scientific
DOI
http://dx.doi.org/10.1142/S0218202509003450
URI
https://basepub.dauphine.fr/handle/123456789/923
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Dolbeault, Jean
Felmer, Patricio
Lewin, Mathieu
Type
Article accepté pour publication ou publié
Abstract (EN)
This paper is devoted to the Hartree-Fock model with temperature in the euclidean space. For large classes of free energy functionals, minimizers are obtained as long as the total charge of the system does not exceed a threshold which depends on the temperature. The usual Hartree-Fock model is recovered in the zero temperature limit. An orbital stability result for the Cauchy problem is deduced from the variational approach.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.