Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms
dc.contributor.author | Bourgeois, Nicolas | |
dc.contributor.author | Escoffier, Bruno
HAL ID: 5124 | |
dc.contributor.author | Paschos, Vangelis | |
dc.date.accessioned | 2012-04-24T14:41:33Z | |
dc.date.available | 2012-04-24T14:41:33Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/9038 | |
dc.language.iso | en | en |
dc.subject | Approximation algorithms | en |
dc.subject | Exponential time algorithms | en |
dc.subject | Maximum independent set | en |
dc.subject | Minimum vertex cover | en |
dc.subject.ddc | 003 | en |
dc.title | Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Institut Universitaire de France;France | |
dc.description.abstracten | Using ideas and results from polynomial time approximation and exact computation we design approximationalgorithms for several NP-hard combinatorial problems achieving ratios that cannot be achieved in polynomial time (unless a very unlikely complexity conjecture is confirmed) with worst-case complexity much lower (though super-polynomial) than that of an exact computation. We study in particular two paradigmatic problems, maxindependentset and minvertexcover. | en |
dc.relation.isversionofjnlname | Discrete Applied Mathematics | |
dc.relation.isversionofjnlvol | 159 | en |
dc.relation.isversionofjnlissue | 17 | en |
dc.relation.isversionofjnldate | 2011 | |
dc.relation.isversionofjnlpages | 1954-1970 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1016/j.dam.2011.07.009 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Recherche opérationnelle | en |