
Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms
Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2011), Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms, Discrete Applied Mathematics, 159, 17, p. 1954-1970. http://dx.doi.org/10.1016/j.dam.2011.07.009
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2011Nom de la revue
Discrete Applied MathematicsVolume
159Numéro
17Éditeur
Elsevier
Pages
1954-1970
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
Using ideas and results from polynomial time approximation and exact computation we design approximationalgorithms for several NP-hard combinatorial problems achieving ratios that cannot be achieved in polynomial time (unless a very unlikely complexity conjecture is confirmed) with worst-case complexity much lower (though super-polynomial) than that of an exact computation. We study in particular two paradigmatic problems, maxindependentset and minvertexcover.Mots-clés
Approximation algorithms; Exponential time algorithms; Maximum independent set; Minimum vertex coverPublications associées
Affichage des éléments liés par titre et auteur.
-
Paschos, Vangelis; Escoffier, Bruno; Bourgeois, Nicolas (2009) Article accepté pour publication ou publié
-
Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2009) Article accepté pour publication ou publié
-
Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2009) Communication / Conférence
-
Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2010) Communication / Conférence
-
Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2010) Communication / Conférence