• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation

Fadili, Jalal; Dossal, Charles; Peyré, Gabriel; Deledalle, Charles-Alban; Vaiter, Samuel (2013), Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation, Applied and Computational Harmonic Analysis, 35, 3, p. 433-451. http://dx.doi.org/10.1016/j.acha.2012.11.006

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00687751
Date
2013
Journal name
Applied and Computational Harmonic Analysis
Volume
35
Number
3
Publisher
Elsevier
Pages
433-451
Publication identifier
http://dx.doi.org/10.1016/j.acha.2012.11.006
Metadata
Show full item record
Author(s)
Fadili, Jalal
Dossal, Charles
Peyré, Gabriel
Deledalle, Charles-Alban
Vaiter, Samuel cc
Abstract (EN)
This paper studies the recovery of an unknown signal $x_0$ from low dimensional noisy observations $y = \Phi x_0 + w$, where $\Phi$ is an ill-posed linear operator and $w$ accounts for some noise. We focus our attention to sparse analysis regularization. The recovery is performed by minimizing the sum of a quadratic data fidelity term and the $\lun$-norm of the correlations between the sought after signal and atoms in a given (generally overcomplete) dictionary. The $\lun$ prior is weighted by a regularization parameter $\lambda > 0$ that accounts for the noise level. In this paper, we prove that minimizers of this problem are piecewise-affine functions of the observations $y$ and the regularization parameter $\lambda$. As a byproduct, we exploit these properties to get an objectively guided choice of $\lambda$. More precisely, we propose an extension of the Generalized Stein Unbiased Risk Estimator (GSURE) and show that it is an unbiased estimator of an appropriately defined risk. This encompasses special cases such as the prediction risk, the projection risk and the estimation risk. We also discuss implementation issues and propose fast algorithms. We apply these risk estimators to the special case of sparse analysis regularization. We finally illustrate the applicability of our framework on several imaging problems.
Subjects / Keywords
unbiased risk estimation; GSURE; SURE; degrees of freedom; local variation; L1 minimization; inverse problems; analysis regularization; sparsity

Related items

Showing items related by title and author.

  • Thumbnail
    Unbiased Risk Estimation for Sparse Analysis Regularization 
    Dossal, Charles; Fadili, Jalal; Peyré, Gabriel; Vaiter, Samuel; Deledalle, Charles-Alban (2012) Communication / Conférence
  • Thumbnail
    Risk estimation for matrix recovery with spectral regularization 
    Deledalle, Charles-Alban; Vaiter, Samuel; Peyré, Gabriel; Fadili, Jalal; Dossal, Charles (2012) Communication / Conférence
  • Thumbnail
    Proximal Splitting Derivatives for Risk Estimation 
    Deledalle, Charles-Alban; Vaiter, Samuel; Peyré, Gabriel; Fadili, Jalal; Dossal, Charles (2012) Communication / Conférence
  • Thumbnail
    The Degrees of Freedom of Partly Smooth Regularizers 
    Vaiter, Samuel; Deledalle, Charles-Alban; Fadili, Jalal; Peyré, Gabriel; Dossal, Charles (2016) Article accepté pour publication ou publié
  • Thumbnail
    The Degrees of Freedom of the Group Lasso 
    Vaiter, Samuel; Deledalle, Charles-Alban; Peyré, Gabriel; Fadili, Jalal; Dossal, Charles (2012) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo