• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Statistical Learning and Data Science

Gettler-Summa, Mireille; Bottou, Léon; Murtagh, Fionn; Pardoux, Catherine; Touati, Myriam; Goldfarb, Bernard (2011), Statistical Learning and Data Science, Chapman & Hall / CRC Press, p. 243

Type
Ouvrage
Date
2011
Éditeur
Chapman & Hall / CRC Press
Titre de la collection
Chapman & Hall/CRC Computer Science & Data Analysis
Isbn
9781439867631
Pages
243
Métadonnées
Afficher la notice complète
Auteur(s)
Gettler-Summa, Mireille
Bottou, Léon
Murtagh, Fionn
Pardoux, Catherine
Touati, Myriam
Goldfarb, Bernard
Résumé (EN)
Data analysis is changing fast. Driven by a vast range of application domains and affordable tools, machine learning has become mainstream. Unsupervised data analysis, including cluster analysis, factor analysis, and low dimensionality mapping methods continually being updated, have reached new heights of achievement in the incredibly rich data world that we inhabit. Statistical Learning and Data Science is a work of reference in the rapidly evolving context of converging methodologies. It gathers contributions from some of the foundational thinkers in the different fields of data analysis to the major theoretical results in the domain. On the methodological front, the volume includes conformal prediction and frameworks for assessing confidence in outputs, together with attendant risk. It illustrates a wide range of applications, including semantics, credit risk, energy production, genomics, and ecology. The book also addresses issues of origin and evolutions in the unsupervised data analysis arena, and presents some approaches for time series, symbolic data, and functional data. Over the history of multidimensional data analysis, more and more complex data have become available for processing. Supervised machine learning, semi-supervised analysis approaches, and unsupervised data analysis, provide great capability for addressing the digital data deluge. Exploring the foundations and recent breakthroughs in the field, Statistical Learning and Data Science demonstrates how data analysis can improve personal and collective health and the well-being of our social, business, and physical environments.
Mots-clés
Statistical Learning; Data analysis

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    An homogeneity measurement for functional data clusters. 
    Gettler-Summa, Mireille; Goldfarb, Bernard (2009-11-16) Communication / Conférence
  • Vignette de prévisualisation
    Clustering Trajectories of a Three-Way Longitudinal Data Set 
    Gettler-Summa, Mireille; Goldfarb, Bernard; Vichi, Maurizio (2011) Chapitre d'ouvrage
  • Vignette de prévisualisation
    Symbolic Processing for Three-Way Data 
    Pardoux, Catherine; Gettler-Summa, Mireille (1997) Communication / Conférence
  • Vignette de prévisualisation
    New Approaches to Analysing Three-Way Data Arrays 
    Pardoux, Catherine; Gettler-Summa, Mireille (1999) Document de travail / Working paper
  • Vignette de prévisualisation
    Symbolic Approaches for Three-way Data 
    Gettler-Summa, Mireille; Pardoux, Catherine (2000) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo