Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems

View/ Open
Date
2006Notes
New references addedDewey
Probabilités et mathématiques appliquéesSujet
Gagliardo-Nirenberg inequalities for systems; systems of nonlinear Schrödinger equations; free energy; dynamical stability in quantum systems; occupation numbers; mixed states; stability of matter; Weyl asymptotics; asymptotic distribution of eigenvalues; Schrödinger operator; Lieb-Thirring inequality; optimal constants; Gagliardo-Nirenberg inequality; orthonormal and sub-orthonormal systems; Gamma function; logarithmic Sobolev inequalityJournal issue
Journal of Functional AnalysisVolume
238Number
1Publication date
2006Article pages
193-220Publisher
ElsevierCollections
Metadata
Show full item recordAuthor
Paturel, Eric
Dolbeault, Jean
Felmer, Patricio
Loss, Michael
Type
Abstract (EN)
We prove a Lieb-Thirring type inequality for potentials such that the associated Schrödinger operator has a pure discrete spectrum made of an unbounded sequence of eigenvalues. This inequality is equivalent to a generalized Gagliardo-Nirenberg inequality for systems. As a special case, we prove a logarithmic Sobolev inequality for infinite systems of mixed states. Optimal constants are determined and free energy estimates in connection with mixed states representations are also investigated.Related items
Showing items related by title, author, creator and subject.
-
Emergence d'un nouveau type de Système de Systèmes : observations et propositions à partir du système d'alerte national français
Arru, Maude; Negre, Elsa; Rosenthal-Sabroux, Camille (2018) Communication / Conférence -
Un modèle de Management de système d'information transposé d'un modèle de Knowledge Management
Rosenthal-Sabroux, Camille; Grundstein, Michel (2007) Document de travail / Working paper -
Quelques propriétés et applications du contrôle en temps minimal
Orieux, Michaël (2018-11-27) Thèse