• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators

Esteban, Maria J.; Dolbeault, Jean; Bosi, Roberta (2008), Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators, Communications on Pure and Applied Mathematics, 7, 3, p. 533–562

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00113158/en/
Date
2008
Journal name
Communications on Pure and Applied Mathematics
Volume
7
Number
3
Pages
533–562
Metadata
Show full item record
Author(s)
Esteban, Maria J. cc
Dolbeault, Jean cc
Bosi, Roberta
Abstract (EN)
By expanding squares, we prove several Hardy inequalities with two critical singularities and constants which explicitly depend upon the distance between the two singularities. These inequalities involve the L2 norm. Such results are generalized to an arbitrary number of singularities and compared with standard results given by the IMS method. The generalized version of Hardy inequalities with several singularities is equivalent to some spectral information on a Schrödinger operator involving a potential with several inverse square singularities. We also give a generalized Hardy inequality for Dirac operators in the case of a potential having several singularities of Coulomb type, which are critical for Dirac operators.
Subjects / Keywords
Dirac-Coulomb Hamiltonian; singular potentials; Schrödinger operator; optimal inequalities; weighted norms; Hardy inequalities

Related items

Showing items related by title and author.

  • Thumbnail
    Critical magnetic field for 2d magnetic Dirac-Coulomb operators and Hardy inequalities 
    Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2021) Chapitre d'ouvrage
  • Thumbnail
    Hardy-type estimates for Dirac operators 
    Dolbeault, Jean; Duoandikoetxea, Javier; Esteban, Maria J.; Vega, Luis (2007) Article accepté pour publication ou publié
  • Thumbnail
    An analytical proof of Hardy-like inequalities related to the Dirac operator 
    Loss, Michael; Esteban, Maria J.; Dolbeault, Jean; Vega, Luis (2004) Article accepté pour publication ou publié
  • Thumbnail
    Extremal functions in some interpolation inequalities: Symmetry, symmetry breaking and estimates of the best constants 
    Dolbeault, Jean; Esteban, Maria J. (2011) Communication / Conférence
  • Thumbnail
    About a non-homogeneous Hardy-inequality and its relation with the spectrum of Dirac operators 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2002) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo