• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Fractional semi-linear parabolic equations with unbounded data

Alibaud, Nathaël; Imbert, Cyril (2009), Fractional semi-linear parabolic equations with unbounded data, Transactions of the American Mathematical Society, 361, p. 2527-2566. http://dx.doi.org/10.1090/S0002-9947-08-04758-2

Type
Article accepté pour publication ou publié
Lien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00144548/en/
Date
2009
Nom de la revue
Transactions of the American Mathematical Society
Volume
361
Pages
2527-2566
Identifiant publication
http://dx.doi.org/10.1090/S0002-9947-08-04758-2
Métadonnées
Afficher la notice complète
Auteur(s)
Alibaud, Nathaël
Imbert, Cyril cc
Résumé (EN)
This paper is devoted to the study of semi-linear parabolic equations whose principal term is fractional, i.e. is integral and eventually singular. A typical example is the fractional Laplace operator. This work sheds light on the fact that, if the initial datum is not bounded, assumptions on the non-linearity are closely related to its behavior at infinity. The sub-linear and super-linear cases are first treated by classical techniques. We next present a third original case: if the associated first order Hamilton-Jacobi equation is such that perturbations propagate at finite speed, then the semi-linear parabolic equation somehow keeps memory of this property. By using such a result, locally bounded initial data that are merely integrable at infinity can be handled. Next, regularity of the solution is proved. Eventually, strong convergence of gradients as the fractional term disappears is proved for strictly convex non-linearity.
Mots-clés
integro-differential Hamilton-Jacobi equation; unbounded data; unbounded solutions; finite-infinite propagation speed; non-local regularization; Lévy operator; viscosity solution; convergence of the gradients

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Repeated games for non-linear parabolic integro-differential equations and integral curvature flows 
    Serfaty, Sylvia; Imbert, Cyril (2011) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Asymptotic properties of entropy solutions to fractal Burgers equation 
    Alibaud, Nathaël; Karch, Grzegorz; Imbert, Cyril (2010) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Phasefield theory for fractional diffusion-reaction equations and applications 
    Imbert, Cyril; Souganidis, Panagiotis E. (2009) Document de travail / Working paper
  • Vignette de prévisualisation
    Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations 
    Barles, Guy; Chasseigne, Emmanuel; Imbert, Cyril (2011) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations 
    Imbert, Cyril (2011) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo