Show simple item record

dc.contributor.authorDolbeault, Jean
HAL ID: 87
ORCID: 0000-0003-4234-2298
dc.contributor.authorEsteban, Maria J.
HAL ID: 738381
ORCID: 0000-0003-1700-9338
dc.contributor.authorLoss, Michael
dc.date.accessioned2009-07-06T14:45:55Z
dc.date.available2009-07-06T14:45:55Z
dc.date.issued2008
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/834
dc.language.isoenen
dc.subjectLandau levels
dc.subjectpair creation
dc.subjectrelativistic hydrogen atom
dc.subjectDirac-Coulomb Hamiltonian
dc.subjectDirac equation
dc.subjectmagnetic field
dc.subjectmin-max levels
dc.subjectground state
dc.subjectRelativistic quantum mechanicsen
dc.subject.ddc519en
dc.titleCharacterization of the critical magnetic field in the Dirac-Coulomb equationen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherGeorgia Institute of Technology;États-Unis
dc.description.abstractenWe consider a relativistic hydrogenic atom in a strong magnetic field. The ground state level depends on the strength of the magnetic field and reaches the lower end of the spectral gap of the Dirac-Coulomb operator for a certain critical value, the critical magnetic field. We also define a critical magnetic field in a Landau level ansatz. In both cases, when the charge Z of the nucleus is not too small, these critical magnetic fields are huge when measured in Tesla, but not so big when the equation is written in dimensionless form. When computed in the Landau level ansatz, orders of magnitude of the critical field are correct, as well as the dependence in Z. The computed value is however significantly too big for a large Z, and the wave function is not well approximated. Hence, accurate numerical computations involving the Dirac equation cannot systematically rely on the Landau level ansatz. Our approach is based on a scaling property. The critical magnetic field is characterized in terms of an equivalent eigenvalue problem. This is our main analytical result, and also the starting point of our numerical scheme.en
dc.relation.isversionofjnlnameJournal of Physics A: Mathematical and Theoretical
dc.relation.isversionofjnlvol41en
dc.relation.isversionofjnlissue18
dc.relation.isversionofjnldate2008
dc.relation.isversionofjnlpages185-303en
dc.relation.isversionofdoihttp://dx.doi.org/10.1088/1751-8113/41/18/185303
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00201095/en/en
dc.description.sponsorshipprivateouien
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record