Probabilistic approach for granular media equations in the non uniformly convex case
Malrieu, Florent; Guillin, Arnaud; Cattiaux, Patrick (2008), Probabilistic approach for granular media equations in the non uniformly convex case, Probability Theory and Related Fields, 140, 1-2, p. 19-40. http://dx.doi.org/10.1007/s00440-007-0056-3
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00021591/en/Date
2008Journal name
Probability Theory and Related FieldsVolume
140Number
1-2Publisher
Springer
Pages
19-40
Publication identifier
Metadata
Show full item recordAbstract (EN)
We use here a particle system to prove a convergence result as well as a deviation inequality for solutions of granular media equation when the confinement potential and the interaction potential are no more uniformly convex. Proof is straightforward, simplifying deeply proofs of Carrillo-McCann-Villani \cite{CMV,CMV2} and completing results of Malrieu \cite{malrieu03} in the uniformly convex case. It relies on an uniform propagation of chaos property and a direct control in Wasserstein distance of solutions starting with different initial measures. The deviation inequality is obtained via a $T_1$ transportation cost inequality replacing the logarithmic Sobolev inequality which is no more clearly dimension free.Subjects / Keywords
Concentration inequalities; Logarithmic Sobolev Inequalities; transportation cost inequality; Granular media equationRelated items
Showing items related by title and author.
-
Cattiaux, Patrick; Guillin, Arnaud (2008) Article accepté pour publication ou publié
-
Guillin, Arnaud; Gentil, Ivan; Bolley, François (2013) Article accepté pour publication ou publié
-
Malrieu, Florent; Guillin, Arnaud; Bolley, François (2010) Article accepté pour publication ou publié
-
Cattiaux, Patrick; Gentil, Ivan; Guillin, Arnaud (2007-01) Article accepté pour publication ou publié
-
Cattiaux, Patrick; Guillin, Arnaud (2006) Article accepté pour publication ou publié