• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Probabilistic approach for granular media equations in the non uniformly convex case

Thumbnail
Date
2008
Link to item file
http://hal.archives-ouvertes.fr/hal-00021591/en/
Dewey
Probabilités et mathématiques appliquées
Sujet
Concentration inequalities; Logarithmic Sobolev Inequalities; transportation cost inequality; Granular media equation
Journal issue
Probability Theory and Related Fields
Volume
140
Number
1-2
Publication date
2008
Article pages
19-40
Publisher
Springer
DOI
http://dx.doi.org/10.1007/s00440-007-0056-3
URI
https://basepub.dauphine.fr/handle/123456789/832
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Malrieu, Florent
Guillin, Arnaud
Cattiaux, Patrick
Type
Article accepté pour publication ou publié
Abstract (EN)
We use here a particle system to prove a convergence result as well as a deviation inequality for solutions of granular media equation when the confinement potential and the interaction potential are no more uniformly convex. Proof is straightforward, simplifying deeply proofs of Carrillo-McCann-Villani \cite{CMV,CMV2} and completing results of Malrieu \cite{malrieu03} in the uniformly convex case. It relies on an uniform propagation of chaos property and a direct control in Wasserstein distance of solutions starting with different initial measures. The deviation inequality is obtained via a $T_1$ transportation cost inequality replacing the logarithmic Sobolev inequality which is no more clearly dimension free.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.