• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Recentered importance sampling with applications to Bayesian model validation

Nur, Darfiana; Mengersen, Kerrie; McVinish, Ross (2013), Recentered importance sampling with applications to Bayesian model validation, Journal of Computational and Graphical Statistics, 22, 1, p. 215-228. http://dx.doi.org/10.1080/10618600.2012.681239

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00641483
Date
2013
Journal name
Journal of Computational and Graphical Statistics
Volume
22
Number
1
Publisher
Taylor and Francis
Pages
215-228
Publication identifier
http://dx.doi.org/10.1080/10618600.2012.681239
Metadata
Show full item record
Author(s)
Nur, Darfiana

Mengersen, Kerrie

McVinish, Ross
Abstract (EN)
Since its introduction in the early 90's, the idea of using importance sampling (IS) with Markov chain Monte Carlo (MCMC) has found many applications. This paper examines problems associated with its application to repeated evaluation of related posterior distributions with a particular focus on Bayesian model validation. We demonstrate that, in certain applications, the curse of dimensionality can be reduced by a simple modi - cation of IS. In addition to providing new theoretical insight into the behaviour of the IS approximation in a wide class of models, our result facilitates the implementation of computationally intensive Bayesian model checks. We illustrate the simplicity, computational savings and potential inferential advantages of the proposed approach through two substantive case studies, notably computation of Bayesian p-values for linear regression models and simulation-based model checking. Supplementary materials including appendices and the R code for Section 3.1.2 are available online.
Subjects / Keywords
Bayesian modeling; MCMC; p-values; importance sampling; goodness of fit; curse of dimensionality
JEL
C15 - Statistical Simulation Methods: General
C11 - Bayesian Analysis: General

Related items

Showing items related by title and author.

  • Thumbnail
    Bayesian Mixtures of Triangular distributions with application to Goodness-of-Fit Testing 
    Rousseau, Judith; Mengersen, Kerrie; McVinish, Ross (2005) Document de travail / Working paper
  • Thumbnail
    Bayesian hidden Markov Model for DNA segmentation : A prior sensitivity analysis 
    Nur, Darfiana; Allingham, David; Rousseau, Judith; Mengersen, Kerrie; McVinish, Ross (2009) Article accepté pour publication ou publié
  • Thumbnail
    Bayesian Goodness-of-Fit Testing with Mixtures of Triangular Distributions 
    Mengersen, Kerrie; Rousseau, Judith; McVinish, Ross (2009) Article accepté pour publication ou publié
  • Thumbnail
    Application of a Bayesian nonparametric model to derive toxicity estimates based on the response of Antarctic microbial communities to fuel-contaminated soil 
    Arbel, Julyan; King, Catherine K.; Raymond, Ben; Winsley, Tristrom; Mengersen, Kerrie (2015) Article accepté pour publication ou publié
  • Thumbnail
    Use in practice of importance sampling for repeated MCMC for Poisson models 
    Gajda, Dorota; Guihenneuc-Jouyaux, Chantal; Rousseau, Judith; Mengersen, Kerrie; Nur, Darfiana (2010) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo