• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Proximal Splitting Derivatives for Risk Estimation

Deledalle, Charles-Alban; Vaiter, Samuel; Peyré, Gabriel; Fadili, Jalal; Dossal, Charles (2012), Proximal Splitting Derivatives for Risk Estimation, 2nd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2012), 2012-05, Cachan, France

Type
Communication / Conférence
External document link
http://hal.archives-ouvertes.fr/hal-00670213
Date
2012
Conference title
2nd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2012)
Conference date
2012-05
Conference city
Cachan
Conference country
France
Journal name
Journal of Physics: Conference Series
Volume
386
Number
1
Publisher
IOP Science
Pages
012003
Publication identifier
http://dx.doi.org/10.1088/1742-6596/386/1/012003
Metadata
Show full item record
Author(s)
Deledalle, Charles-Alban
Vaiter, Samuel cc
Peyré, Gabriel
Fadili, Jalal
Dossal, Charles
Abstract (EN)
This paper develops a novel framework to compute a projected Generalized Stein Unbiased Risk Estimator (GSURE) for a wide class of sparsely regularized solutions of inverse problems. This class includes arbitrary convex data fidelities with both analysis and synthesis mixed L1-L2 norms. The GSURE necessitates to compute the (weak) derivative of a solution w.r.t.~the observations. However, as the solution is not available in analytical form but rather through iterative schemes such as proximal splitting, we propose to iteratively compute the GSURE by differentiating the sequence of iterates. This provides us with a sequence of differential mappings, which, hopefully, converge to the desired derivative and allows to compute the GSURE. We illustrate this approach on total variation regularization with Gaussian noise and to sparse regularization with poisson noise, to automatically select the regularization parameter.
Subjects / Keywords
Sparsity; regularization; inverse problems; risk estimator; GSURE; automatic differentiation

Related items

Showing items related by title and author.

  • Thumbnail
    Risk estimation for matrix recovery with spectral regularization 
    Deledalle, Charles-Alban; Vaiter, Samuel; Peyré, Gabriel; Fadili, Jalal; Dossal, Charles (2012) Communication / Conférence
  • Thumbnail
    Unbiased Risk Estimation for Sparse Analysis Regularization 
    Dossal, Charles; Fadili, Jalal; Peyré, Gabriel; Vaiter, Samuel; Deledalle, Charles-Alban (2012) Communication / Conférence
  • Thumbnail
    Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation 
    Fadili, Jalal; Dossal, Charles; Peyré, Gabriel; Deledalle, Charles-Alban; Vaiter, Samuel (2013) Article accepté pour publication ou publié
  • Thumbnail
    The degrees of freedom of the Group Lasso for a General Design 
    Vaiter, Samuel; Peyré, Gabriel; Fadili, Jalal; Deledalle, Charles-Alban; Dossal, Charles (2013) Communication / Conférence
  • Thumbnail
    Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection 
    Fadili, Jalal; Peyré, Gabriel; Vaiter, Samuel; Deledalle, Charles-Alban (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo