Show simple item record

dc.contributor.authorSouganidis, Panagiotis E.*
dc.contributor.authorLions, Pierre-Louis*
dc.date.accessioned2012-02-28T13:17:31Z
dc.date.available2012-02-28T13:17:31Z
dc.date.issued2010
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/8307
dc.language.isoenen
dc.subjectviscosity solutionsen
dc.subjectHamilton-Jacobi equationsen
dc.subjectStochastic homogenizationen
dc.subject.ddc519en
dc.titleStochastic homogenization of Hamilton-Jacobi and "Viscous"-Hamilton-Jacobi equations with convexen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherDepartment of mathematics http://www.math.uchicago.edu/ Université de Chicago;États-Unis
dc.description.abstractenIn this note we revisit the homogenization theory of Hamilton-Jacobi and “viscous”- Hamilton-Jacobi partial differential equations with convex nonlinearities in stationary ergodic envi- ronments. We present a new simple proof for the homogenization in probability. The argument uses some a priori bounds (uniform modulus of continuity) on the solution and the convexity and coer- civity (growth) of the nonlinearity. It does not rely, however, on the control interpretation formula of the solution as was the case with all previously known proofs. We also introduce a new formula for the effective Hamiltonian for Hamilton-Jacobi and “viscous” Hamilton-Jacobi equations.en
dc.relation.isversionofjnlnameCommunications in Mathematical Sciences
dc.relation.isversionofjnlvol8en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate2010
dc.relation.isversionofjnlpages627-637en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherInternational Pressen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
hal.person.labIds*
hal.person.labIds*


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record