• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

On the NP-completeness of the perfect matching free subgraph problem

Thumbnail
View/Open
cahier_312-1.pdf (260.1Kb)
Date
2012
Dewey
Principes généraux des mathématiques
Sujet
Bipartite graph; Matching; Structural analysis problem; NP-complete; Tripartite graph; Stable set; Blocker
Journal issue
Theoretical Computer Science
Volume
423
Publication date
2012
Article pages
25-29
Publisher
Elsevier
DOI
http://dx.doi.org/10.1016/j.tcs.2011.12.065
URI
https://basepub.dauphine.fr/handle/123456789/8212
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Lacroix, Mathieu
Mahjoub, Ali Ridha
Martin, Sébastien
Picouleau, Christophe
Type
Article accepté pour publication ou publié
Abstract (EN)
Given a bipartite graph G=(U∪V,E) such that ∣U∣=∣V∣ and every edge is labelled true or false or both, the perfect matching free subgraph problem is to determine whether or not there exists a subgraph of G containing, for each node u of U, either all the edges labelled true or all the edges labelled false incident to u, and which does not contain a perfect matching. This problem arises in the structural analysis of differential-algebraic systems. The purpose of this paper is to show that this problem is NP-complete. We show that the problem is equivalent to the stable set problem in a restricted case of tripartite graphs. Then we show that the latter remains NP-complete in that case. We also prove the NP-completeness of the related minimum blocker problem in bipartite graphs with perfect matching.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.