• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

Fair solutions for some multiagent optimization problems

Thumbnail
Date
2013
Indexation documentaire
Recherche opérationnelle
Subject
Multiagent optimization; Combinatorial optimization; Fairness
Nom de la revue
Autonomous Agents and Multi-Agent Systems
Volume
26
Numéro
2
Date de publication
2013
Pages article
184-201
Nom de l'éditeur
Springer
DOI
http://dx.doi.org/10.1007/s10458-011-9188-z
URI
https://basepub.dauphine.fr/handle/123456789/7927
Collections
  • LAMSADE : Publications
Métadonnées
Afficher la notice complète
Auteur
Escoffier, Bruno
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Gourvès, Laurent
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Monnot, Jérôme
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Type
Article accepté pour publication ou publié
Résumé en anglais
We consider optimization problems in a multiagent setting where a solution is evaluated with a vector. Each coordinate of this vector represents an agent’s utility for the solution. Due to the possible conflicts, it is unlikely that one feasible solution is optimal for all agents. Then, a natural aim is to find solutions that maximize the satisfaction of the least satisfied agent, where the satisfaction of an agent is defined as his relative utility, i.e., the ratio between his utility for the given solution and his maximum possible utility. This criterion captures a classical notion of fairness since it focuses on the agent with lowest relative utility. We study worst-case bounds on this ratio: for which ratio a feasible solution is guaranteed to exist, i.e., to what extend can we find a solution that satisfies all agents? How can we build these solutions in polynomial time? For several optimization problems, we give polynomial-time deterministic algorithms which (almost always) achieve the best possible ratio.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.