Show simple item record

dc.contributor.authorBuffoni, Boris
dc.contributor.authorSéré, Eric
HAL ID: 171149
dc.contributor.authorToland, John
dc.date.accessioned2009-07-06T09:33:21Z
dc.date.available2009-07-06T09:33:21Z
dc.date.issued2005
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/784
dc.language.isoenen
dc.subjectvariational methoden
dc.subjectcritical-point theory
dc.subjectquasi-linear elliptic problems
dc.subjectperiodic water waves
dc.subjectfree boundaries
dc.subjectminimization
dc.subject.ddc519en
dc.titleMinimisation methods for quasi-linear problems, with an application to periodic water wavesen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherUniversity of Bath;Royaume-Uni
dc.contributor.editoruniversityotherEcole Polytechnique Fédérale de Lausanne (EPFL);Suisse
dc.description.abstractenPenalization and minimization methods are used to give an abstract semiglobal result on the existence of nontrivial solutions of parameter-dependent quasi-linear differential equations in variational form. A consequence is a proof of existence, by infinite-dimensional variational means, of bifurcation points for quasi-linear equations which have a line of trivial solutions. The approach is to penalize the functional twice. Minimization gives the existence of critical points of the resulting problem, and a priori estimates show that the critical points lie in a region unaffected by the leading penalization. The other penalization contributes to the value of the parameter. As applications we prove the existence of periodic water waves, with and without surface tension.en
dc.relation.isversionofjnlnameSIAM Journal on Mathematical Analysis
dc.relation.isversionofjnlvol36en
dc.relation.isversionofjnlissue4en
dc.relation.isversionofjnldate2005
dc.relation.isversionofjnlpages1080-1094en
dc.relation.isversionofdoihttp://dx.doi.org/10.1137/S0036141003432766en
dc.description.sponsorshipprivateouien
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record