• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail

Minimisation methods for quasi-linear problems, with an application to periodic water waves

Buffoni, Boris; Séré, Eric; Toland, John (2005), Minimisation methods for quasi-linear problems, with an application to periodic water waves, SIAM Journal on Mathematical Analysis, 36, 4, p. 1080-1094. http://dx.doi.org/10.1137/S0036141003432766

Voir/Ouvrir
minim_buffoni.PDF (242.8Kb)
Type
Article accepté pour publication ou publié
Date
2005
Nom de la revue
SIAM Journal on Mathematical Analysis
Volume
36
Numéro
4
Pages
1080-1094
Identifiant publication
http://dx.doi.org/10.1137/S0036141003432766
Métadonnées
Afficher la notice complète
Auteur(s)
Buffoni, Boris
Séré, Eric
Toland, John
Résumé (EN)
Penalization and minimization methods are used to give an abstract semiglobal result on the existence of nontrivial solutions of parameter-dependent quasi-linear differential equations in variational form. A consequence is a proof of existence, by infinite-dimensional variational means, of bifurcation points for quasi-linear equations which have a line of trivial solutions. The approach is to penalize the functional twice. Minimization gives the existence of critical points of the resulting problem, and a priori estimates show that the critical points lie in a region unaffected by the leading penalization. The other penalization contributes to the value of the parameter. As applications we prove the existence of periodic water waves, with and without surface tension.
Mots-clés
variational method; critical-point theory; quasi-linear elliptic problems; periodic water waves; free boundaries; minimization

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Surface water waves as saddle points of the energy 
    Buffoni, Boris; Séré, Eric; Toland, John (2003) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Spectral Pollution and How to Avoid It (With Applications to Dirac and Periodic Schrödinger Operators) 
    Lewin, Mathieu; Séré, Eric (2009) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Normalized solutions to strongly indefinite semilinear equations 
    Buffoni, Boris; Esteban, Maria J.; Séré, Eric (2006) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    H convergence for quasi-linear elliptic equations with quadratic growth 
    Bensoussan, Alain; Boccardo, L.; Murat, F. (1992) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Cauchy problem for viscous shallow water equations with a term of capillarity 
    Haspot, Boris (2010) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo