Regularity and singularities of Optimal Convex shapes in the plane
dc.contributor.author | Lamboley, Jimmy
HAL ID: 6598 | |
dc.contributor.author | Pierre, Michel
HAL ID: 6510 | |
dc.contributor.author | Novruzi, Arian | |
dc.date.accessioned | 2012-01-03T16:06:43Z | |
dc.date.available | 2012-01-03T16:06:43Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/7823 | |
dc.language.iso | en | en |
dc.subject | Shape optimization | en |
dc.subject | convexity constraint | en |
dc.subject | optimality conditions | en |
dc.subject | regularity of free boundary | en |
dc.subject.ddc | 516 | en |
dc.title | Regularity and singularities of Optimal Convex shapes in the plane | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Institut de Recherche Mathématique de Rennes (IRMAR) http://www.math.univ-rennes1.fr/irmar CNRS : UMR6625 – Université de Rennes 1 – École normale supérieure de Cachan - ENS Cachan – Institut National des Sciences Appliquées de Rennes – Université Rennes 2;France | |
dc.contributor.editoruniversityother | Department of Mathematics and Statistics University of Ottawa;Canada | |
dc.description.abstracten | We focus here on the analysis of the regularity or singularity of solutions $\Om_{0}$ to shape optimization problems among convex planar sets, namely: $$ J(\Om_{0})=\min\{J(\Om),\ \Om\ \textrm{convex},\ \Omega\in\mathcal S_{ad}\}, $$ where $\mathcal S_{ad}$ is a set of 2-dimensional admissible shapes and $J:\mathcal{S}_{ad}\rightarrow\R$ is a shape functional. Our main goal is to obtain qualitative properties of these optimal shapes by using first and second order optimality conditions, including the infinite dimensional Lagrange multiplier due to the convexity constraint. We prove two types of results: \begin{itemize} \item[i)] under a suitable convexity property of the functional $J$, we prove that $\Omega_0$ is a $W^{2,p}$-set, $p\in[1,\infty]$. This result applies, for instance, with $p=\infty$ when the shape functional can be written as $ J(\Omega)=R(\Omega)+P(\Omega), $ where $R(\Om)=F(|\Om|,E_{f}(\Om),\la_{1}(\Om))$ involves the area $|\Omega|$, the Dirichlet energy $E_f(\Omega)$ or the first eigenvalue of the Laplace-Dirichlet operator $\lambda_1(\Omega)$, and $P(\Omega)$ is the perimeter of $\Om$, \item[ii)] under a suitable concavity assumption on the functional $J$, we prove that $\Omega_{0}$ is a polygon. This result applies, for instance, when the functional is now written as $ J(\Om)=R(\Omega)-P(\Omega), $ with the same notations as above. \end{itemize} | en |
dc.relation.isversionofjnlname | Archive for Rational Mechanics and Analysis | |
dc.relation.isversionofjnlvol | 205 | |
dc.relation.isversionofjnlissue | 1 | |
dc.relation.isversionofjnldate | 2012 | |
dc.relation.isversionofjnlpages | 313-343 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/s00205-012-0514-7 | |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00651557/fr/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Springer | |
dc.subject.ddclabel | Géométrie | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |