• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

Regularity and singularities of Optimal Convex shapes in the plane

Thumbnail
Date
2012
Lien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00651557/fr/
Indexation documentaire
Géométrie
Subject
Shape optimization; convexity constraint; optimality conditions; regularity of free boundary
Nom de la revue
Archive for Rational Mechanics and Analysis
Volume
205
Numéro
1
Date de publication
2012
Pages article
313-343
Nom de l'éditeur
Springer
DOI
http://dx.doi.org/10.1007/s00205-012-0514-7
URI
https://basepub.dauphine.fr/handle/123456789/7823
Collections
  • CEREMADE : Publications
Métadonnées
Afficher la notice complète
Auteur
Lamboley, Jimmy
Pierre, Michel
Novruzi, Arian
Type
Article accepté pour publication ou publié
Résumé en anglais
We focus here on the analysis of the regularity or singularity of solutions $\Om_{0}$ to shape optimization problems among convex planar sets, namely: $$ J(\Om_{0})=\min\{J(\Om),\ \Om\ \textrm{convex},\ \Omega\in\mathcal S_{ad}\}, $$ where $\mathcal S_{ad}$ is a set of 2-dimensional admissible shapes and $J:\mathcal{S}_{ad}\rightarrow\R$ is a shape functional. Our main goal is to obtain qualitative properties of these optimal shapes by using first and second order optimality conditions, including the infinite dimensional Lagrange multiplier due to the convexity constraint. We prove two types of results: \begin{itemize} \item[i)] under a suitable convexity property of the functional $J$, we prove that $\Omega_0$ is a $W^{2,p}$-set, $p\in[1,\infty]$. This result applies, for instance, with $p=\infty$ when the shape functional can be written as $ J(\Omega)=R(\Omega)+P(\Omega), $ where $R(\Om)=F(|\Om|,E_{f}(\Om),\la_{1}(\Om))$ involves the area $|\Omega|$, the Dirichlet energy $E_f(\Omega)$ or the first eigenvalue of the Laplace-Dirichlet operator $\lambda_1(\Omega)$, and $P(\Omega)$ is the perimeter of $\Om$, \item[ii)] under a suitable concavity assumption on the functional $J$, we prove that $\Omega_{0}$ is a polygon. This result applies, for instance, when the functional is now written as $ J(\Om)=R(\Omega)-P(\Omega), $ with the same notations as above. \end{itemize}

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.