• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Regularity, local behavior and partial uniqueness for self-similar profiles of Smoluchowski's coagulation equation

Mischler, Stéphane; Cañizo, José Alfredo (2011), Regularity, local behavior and partial uniqueness for self-similar profiles of Smoluchowski's coagulation equation, Revista Matematica Iberoamericana, 27, 3, p. 803-839. 10.4171/RMI/653

Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-00726385
Date
2011
Journal name
Revista Matematica Iberoamericana
Volume
27
Number
3
Publisher
Consejo Superior de Investigaciones Científicas
Pages
803-839
Publication identifier
10.4171/RMI/653
Metadata
Show full item record
Author(s)
Mischler, Stéphane
Cañizo, José Alfredo
Abstract (EN)
We consider Smoluchowski's equation with a homogeneous kernel of the form $a(x,y) = x^\alpha y ^\beta + x^\beta y^\alpha$ with $-1 < \alpha \leq \beta < 1$ and $\lambda := \alpha + \beta \in (-1,1)$. We first show that self-similar solutions of this equation are infinitely differentiable and prove sharp results on the behavior of self-similar profiles at $y = 0$ in the case $\alpha < 0$. We also give some partial uniqueness results for self-similar profiles: in the case $\alpha = 0$ we prove that two profiles with the same mass and moment of order $\lambda$ are necessarily equal, while in the case $\alpha < 0$ we prove that two profiles with the same moments of order $\alpha$ and $\beta$, and which are asymptotic at $y = 0$, are equal. Our methods include a new representation of the coagulation operator, and estimates of its regularity using derivatives of fractional order.
Subjects / Keywords
regularity; coagulation; self-similarity; uniqueness; asymptotic behavior

Related items

Showing items related by title and author.

  • Thumbnail
    Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations 
    Mischler, Stéphane; Cañizo, José Alfredo; Caceres, Maria J. (2011) Article accepté pour publication ou publié
  • Thumbnail
    Rate of convergence to self-similarity for Smoluchowski's coagulation equation with constant coefficients 
    Cañizo, José Alfredo; Mischler, Stéphane; Mouhot, Clément (2010) Article accepté pour publication ou publié
  • Thumbnail
    Cooling process for inelastic Boltzmann equations for hard spheres, Part II: Self-similar solutions and tail behavior 
    Mouhot, Clément; Mischler, Stéphane (2006) Article accepté pour publication ou publié
  • Thumbnail
    Rate of convergence to self-similarity for the fragmentation equation in L1 spaces 
    Caceres, Maria J.; Cañizo, José Alfredo; Mischler, Stéphane (2010) Communication / Conférence
  • Thumbnail
    Dust and self-similarity for the Smoluchowski coagulation equation 
    Escobedo, Miguel; Mischler, Stéphane (2006) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo