Regularity theory for the spatially homogeneous Boltzmann equation with cut-off
Mouhot, Clément; Villani, Cédric (2004), Regularity theory for the spatially homogeneous Boltzmann equation with cut-off, Archive for Rational Mechanics and Analysis, 173, 2, p. 169-212. http://dx.doi.org/10.1007/s00205-004-0316-7
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00087274/en/Date
2004Journal name
Archive for Rational Mechanics and AnalysisVolume
173Number
2Publisher
Springer-Verlag
Pages
169-212
Publication identifier
Metadata
Show full item recordAbstract (EN)
We develop the regularity theory of the spatially homogeneous Boltzmann equation with cut-off and hard potentials (for instance, hard spheres), by (i) revisiting the Lp-theory to obtain constructive bounds, (ii) establishing propagation of smoothness and singularities, (iii) obtaining estimates about the decay of the sin- gularities of the initial datum. Our proofs are based on a detailed study of the “regularity of the gain operator”. An application to the long-time behavior is presented.Subjects / Keywords
Boltzmann equation ; spatially homogeneous ; hard spheres ; hard potentials ; angular cutoff ; regularity theory ; quantitative ; relaxation to equilibriumRelated items
Showing items related by title and author.
-
Desvillettes, Laurent; Mouhot, Clément (2007) Article accepté pour publication ou publié
-
Desvillettes, Laurent; Mouhot, Clément (2009) Article accepté pour publication ou publié
-
Mouhot, Clément (2006) Article accepté pour publication ou publié
-
Tristani, Isabelle (2014) Article accepté pour publication ou publié
-
Mouhot, Clément; Fournier, Nicolas (2009) Article accepté pour publication ou publié