• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Regularity theory for the spatially homogeneous Boltzmann equation with cut-off

Thumbnail
Date
2004
Notes
47 pages
Link to item file
http://hal.archives-ouvertes.fr/hal-00087274/en/
Dewey
Probabilités et mathématiques appliquées
Sujet
Boltzmann equation ; spatially homogeneous ; hard spheres ; hard potentials ; angular cutoff ; regularity theory ; quantitative ; relaxation to equilibrium
Journal issue
Archive for Rational Mechanics and Analysis
Volume
173
Number
2
Publication date
08-2004
Article pages
169-212
Publisher
Springer-Verlag
DOI
http://dx.doi.org/10.1007/s00205-004-0316-7
URI
https://basepub.dauphine.fr/handle/123456789/771
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Mouhot, Clément
Villani, Cédric
Type
Article accepté pour publication ou publié
Abstract (EN)
We develop the regularity theory of the spatially homogeneous Boltzmann equation with cut-off and hard potentials (for instance, hard spheres), by (i) revisiting the Lp-theory to obtain constructive bounds, (ii) establishing propagation of smoothness and singularities, (iii) obtaining estimates about the decay of the sin- gularities of the initial datum. Our proofs are based on a detailed study of the “regularity of the gain operator”. An application to the long-time behavior is presented.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.