Show simple item record

dc.contributor.authorLewin, Mathieu
dc.date.accessioned2009-07-04T07:38:44Z
dc.date.available2009-07-04T07:38:44Z
dc.date.issued2004
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/764
dc.language.isoenen
dc.subjectPhysique mathématiqueen
dc.subject.ddc519en
dc.titleSolutions of the multiconfiguration equations in quantum chemistryen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThe multiconfiguration methods are the natural generalization of the well-known Hartree-Fock theory for atoms and molecules. By a variational method, we prove the existence of a minimum of the energy and of infinitely many solutions of the multiconfiguration equations, a finite number of them being interpreted as excited states of the molecule. Our results are valid when the total nuclear charge Z exceeds N–1 (N is the number of electrons) and cover most of the methods used by chemists. The saddle points are obtained with a min-max principle; we use a Palais-Smale condition with Morse-type information and a new and simple form of the Euler-Lagrange equations.en
dc.relation.isversionofjnlnameArchive for Rational Mechanics and Analysis
dc.relation.isversionofjnlvol171en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2004-01
dc.relation.isversionofjnlpages83-114en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s00205-003-0281-6en
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00093510/en/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringer-Verlagen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record