• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Solutions of the multiconfiguration equations in quantum chemistry

Thumbnail
Date
2004
Link to item file
http://hal.archives-ouvertes.fr/hal-00093510/en/
Dewey
Probabilités et mathématiques appliquées
Sujet
Physique mathématique
Journal issue
Archive for Rational Mechanics and Analysis
Volume
171
Number
1
Publication date
01-2004
Article pages
83-114
Publisher
Springer-Verlag
DOI
http://dx.doi.org/10.1007/s00205-003-0281-6
URI
https://basepub.dauphine.fr/handle/123456789/764
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Lewin, Mathieu
Type
Article accepté pour publication ou publié
Abstract (EN)
The multiconfiguration methods are the natural generalization of the well-known Hartree-Fock theory for atoms and molecules. By a variational method, we prove the existence of a minimum of the energy and of infinitely many solutions of the multiconfiguration equations, a finite number of them being interpreted as excited states of the molecule. Our results are valid when the total nuclear charge Z exceeds N–1 (N is the number of electrons) and cover most of the methods used by chemists. The saddle points are obtained with a min-max principle; we use a Palais-Smale condition with Morse-type information and a new and simple form of the Euler-Lagrange equations.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.