Date
2004
Lien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00093510/en/
Indexation documentaire
Probabilités et mathématiques appliquées
Subject
Physique mathématique
Nom de la revue
Archive for Rational Mechanics and Analysis
Volume
171
Numéro
1
Date de publication
01-2004
Pages article
83-114
Nom de l'éditeur
Springer-Verlag
Type
Article accepté pour publication ou publié
Résumé en anglais
The multiconfiguration methods are the natural generalization of the well-known Hartree-Fock theory for atoms and molecules. By a variational method, we prove the existence of a minimum of the energy and of infinitely many solutions of the multiconfiguration equations, a finite number of them being interpreted as excited states of the molecule. Our results are valid when the total nuclear charge Z exceeds N–1 (N is the number of electrons) and cover most of the methods used by chemists. The saddle points are obtained with a min-max principle; we use a Palais-Smale condition with Morse-type information and a new and simple form of the Euler-Lagrange equations.