Show simple item record

dc.contributor.authorPeyré, Gabriel
dc.contributor.authorMallat, Stéphane
dc.date.accessioned2009-07-04T07:26:21Z
dc.date.available2009-07-04T07:26:21Z
dc.date.issued2008
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/762
dc.language.isoenen
dc.subjectBandlets; image compression; orthogonal bandlets; geometric imagesen
dc.subject.ddc519en
dc.titleOrthogonal Bandlet Bases for Geometric Images Approximationen
dc.typeArticle accepté pour publication ou publiéen_US
dc.contributor.editoruniversityotherEcole Polytechnique, Palaiseau;France
dc.contributor.editoruniversityotherUniversité de Versailles-Saint Quentin en Yvelines;France
dc.description.abstractenThis paper introduces orthogonal bandelet bases to approximate images having some geometrical regularity. These bandelet bases are computed by applying parametrized Alpert transform operators over an orthogonal wavelet basis. These bandeletization operators depend upon a multiscale geometric flow that is adapted to the image at each wavelet scale. This bandelet construction has a hierarchical structure over wavelet coefficients taking advantage of existing regularity among these coefficients. It is proved that C˛ -images having singularities along Calpha-curves are approximated in a best orthogonal bandelet basis with an optimal asymptotic error decay. Fast algorithms and compression applications are described.en
dc.relation.isversionofjnlnameCommunications on Pure and Applied Mathematics
dc.relation.isversionofjnlvol61en
dc.relation.isversionofjnlissue9en
dc.relation.isversionofjnldate2008-09
dc.relation.isversionofjnlpages1173-1212en
dc.relation.isversionofdoihttp://dx.doi.org/10.1002/cpa.20242en
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00359740/en/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherJohn Wiley & Sonsen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record