• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Rotating Eights: I. The three Γi families

Chenciner, Alain; Féjoz, Jacques; Montgomery, Richard (2005), Rotating Eights: I. The three Γi families, Nonlinearity, 18, 3, p. 1407-1424. http://dx.doi.org/10.1088/0951-7715/18/3/024

View/Open
rotatingEights.pdf (249.9Kb)
Type
Article accepté pour publication ou publié
Date
2005
Journal name
Nonlinearity
Volume
18
Number
3
Publisher
IOP Science
Pages
1407-1424
Publication identifier
http://dx.doi.org/10.1088/0951-7715/18/3/024
Metadata
Show full item record
Author(s)
Chenciner, Alain
Féjoz, Jacques
Montgomery, Richard
Abstract (EN)
We show that three families of relative periodic solutions bifurcate out of the Eight solution of the equal-mass three-body problem: the planar Hénon family, the spatial Marchal P12 family and a new spatial family. The Eight, considered as a spatial curve, is invariant under the action of the 24-element group D6 × Z2. The three families correspond to symmetry breakings where the invariance group becomes isomorphic to D6, the three D6s being embedded in the larger group in different ways. The proof of the existence of these three families relies on writing down the action integral in a rotating frame, viewing the angular velocity of the frame as a parameter, exploiting the invariance of the action under a group action which acts on the angular velocities as well as the curves and, finally, checking numerically the non-degeneracy of the Eight. Pictures and numerical evidence of the three families are presented at the end.
Subjects / Keywords
Periodic solutions; Bifurcation problems; Dynamics of multibody systems; Few- and many-body systems; Nonlinear dynamics and nonlinear dynamical systems

Related items

Showing items related by title and author.

  • Thumbnail
    The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium 
    Chenciner, Alain; Féjoz, Jacques (2008) Article accepté pour publication ou publié
  • Thumbnail
    Unchained polygons and the N-body problem 
    Chenciner, Alain; Féjoz, Jacques (2009) Article accepté pour publication ou publié
  • Thumbnail
    L'équation aux variations verticales d'un équilibre relatif comme source de nouvelles solutions périodiques du problème des N corps 
    Chenciner, Alain; Féjoz, Jacques (2005) Article accepté pour publication ou publié
  • Thumbnail
    Averaging the planar three-body problem in the neighborhood of double inner collisions 
    Féjoz, Jacques (2001) Article accepté pour publication ou publié
  • Thumbnail
    Quasiperiodic motions in the planar three-body problem 
    Féjoz, Jacques (2002) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo