• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium

Chenciner, Alain; Féjoz, Jacques (2008), The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium, Discrete and Continuous Dynamical Systems. Series B, 10, 2-3, p. 421-438. http://dx.doi.org/10.3934/dcdsb.2008.10.421

View/Open
flow.pdf (216.7Kb)
Type
Article accepté pour publication ou publié
Date
2008
Journal name
Discrete and Continuous Dynamical Systems. Series B
Volume
10
Number
2-3
Publisher
American Institute of Mathematical Sciences
Pages
421-438
Publication identifier
http://dx.doi.org/10.3934/dcdsb.2008.10.421
Metadata
Show full item record
Author(s)
Chenciner, Alain
Féjoz, Jacques
Abstract (EN)
From a normal form analysis near the Lagrange equilateral relative equilibrium, we deduce that, up to the action of similarities and time shifts, the only relative periodic solutions which bifurcate from this solution are the (planar) homographic family and the (spatial) [P_{12}] family with its twelfth-order symmetry (see [13, 5]). After reduction by the rotation symmetry of the Lagrange solution and restriction to a center manifold, our proof of the local existence and uniqueness of [P_{12}] follows that of Hill's orbits in the planar circular restricted three-body problem in [7, 1]. Indeed, near the Lagrange solution, the restrictions of constant energy levels of the reduced flow to a center manifold (actually unique) turn out to be three-spheres. In an annulus of section bounded by relative periodic solutions of each family, the normal resonance along the homographic family entails that the Poincaré return map is the identity on the corresponding connected component of the boundary. Using the reflexion symmetry with respect to the plane of the relative equilibrium, we prove that, close enough to the Lagrange solution, the return map is a monotone twist map.
Subjects / Keywords
Three-body problem; Lagrange relative equilibrium; relative periodic orbits; Lyapunov family; resonant normal form

Related items

Showing items related by title and author.

  • Thumbnail
    Averaging the planar three-body problem in the neighborhood of double inner collisions 
    Féjoz, Jacques (2001) Article accepté pour publication ou publié
  • Thumbnail
    Unchained polygons and the N-body problem 
    Chenciner, Alain; Féjoz, Jacques (2009) Article accepté pour publication ou publié
  • Thumbnail
    L'équation aux variations verticales d'un équilibre relatif comme source de nouvelles solutions périodiques du problème des N corps 
    Chenciner, Alain; Féjoz, Jacques (2005) Article accepté pour publication ou publié
  • Thumbnail
    Secular instability in the spatial three-body problem 
    Féjoz, Jacques; Guardia, Marcel (2016) Article accepté pour publication ou publié
  • Thumbnail
    Rotating Eights: I. The three Γi families 
    Chenciner, Alain; Féjoz, Jacques; Montgomery, Richard (2005) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo