Improved Poincaré inequalities
Volzone, Bruno; Dolbeault, Jean (2012), Improved Poincaré inequalities, Nonlinear Analysis: Theory, Methods & Applications, 75, 16, p. 5985–6001. http://dx.doi.org/10.1016/j.na.2012.05.008
Type
Article accepté pour publication ou publiéLien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00638281/fr/Date
2012Nom de la revue
Nonlinear Analysis: Theory, Methods & ApplicationsVolume
75Numéro
16Éditeur
Elsevier
Pages
5985–6001
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
Although the Hardy inequality corresponding to one quadratic singularity, with optimal constant, does not admit any extremal function, it is well known that such a potential can be improved, in the sense that a positive term can be added to the quadratic singularity without violating the inequality, and even a whole asymptotic expansion can be build, with optimal constants for each term. This phenomenon has not been much studied for other inequalities. Our purpose is to prove that it also holds for the gaussian Poincaré inequality. The method is based on a recursion formula, which allows to identify the optimal constants in the asymptotic expansion, order by order. We also apply the same strategy to a family of Hardy-Poincaré inequalities which interpolate between Hardy and gaussian Poincaré inequalities.Mots-clés
Weighted norms; Remainder terms; Best constant; Poincaré inequality; Hardy inequalityPublications associées
Affichage des éléments liés par titre et auteur.
-
Savaré, Giuseppe; Nazaret, Bruno; Dolbeault, Jean (2012) Article accepté pour publication ou publié
-
Dolbeault, Jean; Bartier, Jean-Philippe; Arnold, Anton (2007) Article accepté pour publication ou publié
-
Blanchet, Adrien; Bonforte, Matteo; Dolbeault, Jean; Grillo, Gabriele; Vazquez, Juan-Luis (2007) Article accepté pour publication ou publié
-
Carrapatoso, Kleber; Dolbeault, Jean; Hérau, Frédéric; Mischler, Stéphane; Mouhot, Clément (2022) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J. (2020) Article accepté pour publication ou publié